

PERI INSTITUTE OF TECHNOLOGY (Approved by AICTE, Affiliated to Anna University)

Affiliation number : F.no. Southern/1-4260192094/2019/EQA

Department of Civil Engineering

Regulation 2017

	Will be able to well
C1	will be able to understand the importance of goals air 11
C2	Will get basics knowledge on properties of minerals.
C3	Gain knowledge about types of rocks, their distribution and uses.
C4	Will understand the mostly 1 costs, their distribution and uses.
	Will understand the methods of study on geological structure.
C5	will understand the application of geological investigation:
	bridges, roads, airport and harbor

00	DO	T		CEOS	92 E	NGIN	EERIN	VG GE	OLO	GV				
CO	PO1	PO2	PO ₃	PO4	PO5	PO6	PO7	DOO	DOO	DO	-	1		
C1	3	2	1	2	1	1	107	100	PO9	PO10	PO11	PO12	PSO ₁	PSC
C2	3	2	2		1	1	3	1	1	3	1	2	_	2
Ca	3	2	_ 2	2	1	1	2	1	1	2	2	2	1	
C3	3	2	2	2	2	2	2	1	1				_1	3
C4	3	2	2	1	2	2	2	1	1	3	1	3	3	_
C5	2	2	2	1	2	2	2	1	1	2	2	2	1	2
	2		2	2	1	3	2	1	2	2	1	1	1	
Avg	2.8	2	1.8	1.8	1.4	1.8	2.2	1	1.0	2	1	1	1	2
					*	1.0	2.2	1	1.2	2.4	1.4	2	1.5	22

	CE8301STRENGTH OF MATERIALS I
C1	Understand the concepts of stress and strain principal stresses 1 is in the
C2	simple bending.
C3	Calculate the deflection of beams by different methods and selection of method for determining slope or deflection.
C4	Apply basic equation of torsion in design of circular shafts and helical springs, .
C5	Analyze the pin jointed plane and space trusses

			(CE830	1 STR	ENG	TH OF	MAT	CEDI	ALSI				
CO	PO1	PO ₂	PO ₃	PO4	PO5	PO6	PO7	DOO	DOO	PO10				
C1	3	2	2	1	1	1	10/	PU8	PO9	PO10	PO11	PO12	PSO ₁	PSO2
C2	2	1	1	1	1	1	2	-	1	2	1	2	3	2
	3	1	1	2	1	2	2	-	1	1	2	2	2	4
C3	2	1	1	2	1	2	2		2	1				1
C4	2	2	1	2	1	1	2	-	2	1	2	3	2	1
C5	1	1	1		1	1	1	-	2	1	2	2	2	1
	1	1	1	-	-	1	2	-	1	2	1	2	2	1
Avg	2.2	1.4	1.2	1.7	1	1 4	1.8		1 4		1		2	1
				/	1	1.4	1.0	-	1.4	1.4	1.6	2.2	2.2	13

DI R. PALSON KENNEDY, M.E., Ph.O.

PRINCIPAL

	CE8302 FLUID MECHANICS
21	Get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
2	Understand and solve the problems related to equation of motion.
3	Gain knowledge about dimensional and model analysis.
4	Learn types of flow and losses of flow in pipes.
5	Understand and solve the boundary layer problems.

				C	E8302	FLU	ID MI	ECHA	NICS					
CO	PO1	PO2	PO ₃	PO ₄	PO ₅	PO6	PO7	PO8	POO	PO10	DO11	DO 13	DCO1	DOO
C1	3	2	2	2	2	1	2	1	1	2	1011	PUIZ	PSU1	PSO
C2	3	2	2	3	2	3	2	1	1	. 2	1	2	2	2
C3	2	2	2	3		3	2	1	1	1	1	2	1	_
-	3		2	2	2	2	2	1	1	2	1	2	2	2
C4	3	3	2	2	2	2	1	1	1	1	1	3		
C5	3	3	2	2	2	2	1	1	1	1	_ 1	3	2	1
	3	3		3	2	2	2	1	1	3	1	2		
Avg	3	2.4	2	2.4	2	1.8	1.8	1	1	1.8	1	2.4	17	1.6

					CE8	351	SURV	EYIN	G					
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO6	PO7	POS	POO	PO10	DO11	DOIA	200	I
C1	3	3	1	2	2	2	1	1 00	109	POI	POII	PO12	PSO ₁	PSO:
C2	2	2	1		3	3	1	1	1	1	2	1	2	2
	3	2	1	1	3	2	1	1	-1	1	2	1	1	
C3	3	3	2	2	2	3	1	1	2	2		1	1	-
C4	3	2	2	2	2	3	1	1	2	2	2	1	2	2
	3		2	2	_3	3	1	1	1	2	2	1	2	1
C5	2	3	2	2	3	3	2	1	1	2	2	2		1
Avg	2.8	2.6	1.6	1.8	20	20	1.0	1	1		2	3	-	-
- 8	2.0	2.0	1.0	1.0	2.8	2.8	1.2	1	1.2	1.6	2	14	17	1.6

	CE8351 SURVEYING
C1	Able to understand the use of various surveying instruments and mapping
00	Able to understand measuring Harizantal
C2	Able to understand measuring Horizontal angle and vertical angle using different instruments
C3	Able to understand Methods of Leveling and setting Levels with different instruments
C4	Able to understand Concepts of astronomical surveying and methods to determine time, longitude, latitude and azimuth
C5	Able to understand Concept and principle of modern surveying.

	CE8391 Construction Materials
C1	Able to compare the properties of most common and advanced by its
C2	Able to understand the typical and potential applications of lime seems to
C3	Able to know the production of concrete and also the method of placing and making of concrete elements.
C4	Able to understand the applications of timbers and other materials
C5	Able to understand the importance of modern material for construction.

PRINCIPAL

	1			CF	28391	Con	struct	ion M	ateria	ls				
CO	PO1	PO2	PO3	PO4	PO5					PO10	DO11	DO 12	DCC	200
C1	1	1	1	1	1	_	1	100	109	1	POII	PO12	PSO1	
C2	1	1	1	1	1		1		-	1	-	-	-	2
C3	1	1	1	1	1	-	1	-	-	1	-	-	1	3
	1	1	1	1	2	-	1	-	-	1	1	_	3	_
C4	1	1	2	1	3	1	1	-	-	1	1	_	1	2
C5	2	1	1	2	3	1	1			1	1	-	1	2
Avg	1.2	1	1.2	1.2	2	1	1		-	1	1	-	1	2
8	1.2	1				1	1	-	-	1	1	-	1.5	2.2
C1 A	ble to ap	ply the		28361 iples of	SUR of surv	VEYI eving	NG L	ABOF	RATO	RY				
C2 A	ble to Id	antify.	data	11 - 4		1 1	11111010	1.						

	CE8361 SURVEYING LABORATORY
C1	Able to apply the principles of surveying in field.
C2	Able to Identify data collection methods and prepare field notes
C3	Able to handling basic survey instruments including leveling
C4	Able to development of contour map of given area
C5	Able to posses knowledge about theodolite

			(CE836	ol St	URVE	YING	LABO	ORAT	ORY				
CO	PO1	PO2	PO3	PO4						PO10	DO11	DO 12	DC 0.1	Dala
C1	3	3	2	2	3	2	2	100	109	1010	POII	PO12	PSOI	PSO.
C2	3	3	3	2	2	2	1	-	-	3	2	1	2	1
C3	3	2	3	2	3	2	1	1	-	1	1	-	2	2
	3	3	2	2	2	1	1	-	-	1	1	2		
C4	3	2	3	2	3	1	2	1		-	1		-	
C5	3	3	3	2	3	2	1	1		-	_1	-	1	-
A	2	20	3	2		2	1	1	-	-	1	-	1	-
Avg	3	2.8	2.6	2	2.8	1.6	1.4	1	0	1.67	1.2	1.5	1.5	1.5

		CE83	311	CONS	TRUC	CTION	J M A	TERL	AISI	ADOI	RATO	DXZ		
CO	PO1	PO ₂	PO ₃	PO4	PO5	PO6	PO7	POS	DOO	DO10	DO11	RY	PSO1	
C1	1	1	2		2	100	1	100	109	POIU	POII	PO12	PSO1	PSO2
C2	1	1	2			-	1	1	1	2	1	1	2	-
-	1	1	2	-	2	-	1	1	1	2	1	1	1	2
C3	1	2	1	-	1	_	1	1	1	2	1	1	1	
C4	1	1	1		2		1	1	1		1	1	-	1
C5	2	1	1	-		-	1	2	1	1	1	1	1	-
<u>C3</u>	2	1	1	-	1	-	1	3	1	1	1	1	1	2
Avg	1.2	1.2	1.4	_	1.6		1	1.6	1	1 (1	1	1	3
					1.0		1	1.6	1	1.6	1	1	1.2	2

	CE8311Construction Materials Laboratory
<u>C1</u>	Conduct Quality Control tests on Fine Aggregates
C2	Conduct Quality Control tests on Coarse Aggregates
C3	Conduct Quality Control tests on fresh concrete
C4	Determine the strength properties of hardened concrete
C5	Perform Quality Control tests on Bricks, blocks and tiles

Monnivokkom, Chennoi-600 048

	CE8401Construction Techniques and Practices
C1	Know the different construction techniques and structural systems
C2	Understand various techniques and practices on masonry construction, flooring, and roofing
C3	Plan the requirements for substructure construction.
C4	Know the methods and techniques involved in the construction of various types of super structures
C5	Select, maintain and operate hand and power tools and equipment used in the building construction sites.

	CE8401 CONSTRUCTION TECHNIQUES AND PRACTICES CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO	PO1	PO ₂	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	DSO	
C1	3	3	1	3	1	2	1	1	1	1	2	1	1	2	
C2	3	3	1	2	1	2	1	1	1	1	1	1	1		
C3	3	2	2	3	3	3	2	2	2	2	1	1	1	-	
C4	3	2	2	2	2	2	2	2		2	2	2	2	3	
0.5	3			3	3	3	2	1	1	2	2	2	2	2	
C5	2	2	2	1	2	2	1	1	1	2	2	1	1	1	
Avg	2.8	2.4	1.8	2.4	2	2.4	1.4	1.1	1.1	1.6	1.8	14	1.4	2	

	CE8402 Strength Of Materials II
C1	Determine the strain energy and compute the deflection of determinate beams, frames and trusses using energy principles
C2	Analyze propped cantilever, fixed beams and continuous beams using theorem of three moment equation for external loadings and support settlements.
C3	Find the load carrying capacity of columns and stresses induced in columns and cylinders
C4	Determine principal stresses and planes for an element in three dimensional state of stress and study various theories of failure
C5	Determine the stresses due to Unsymmetrical bending of beams, locate the shear center, and find the stresses in curved beams.

			CI	28402	STI	RENG	ТНО	F MA	TERI	ALS I	I			
CO	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	2	1	1	2	3	3	-	1	-	3	3	3	2	130
C2	3	2	2	3	2	3		1		2	2	3		2
C3	3	2	3	2	3	1		1	_	2	2	3	1	1
C4	3	1	2	2	2	2		1	-	3	3	3	1	-
	3	1				3	-	1	-	2	2	3	2	-
C5	3	2	3	2	2	3	-	1	-	2	3	3	1	2
Avg	2.8	2	2.2	2.2	2.4	2.4	-	1	-	2.4	2.6	3	1.5	1 67

PRINCIPAL

			(CE840	3 Ap	plied	Hydra	ulic E	ngine	ering				
CO	PO1	PO2								PO10	PO11	PO12	PSO1	DSO
C1	3	2	1	2	1	2	1	-	-	-	1011	1012	1301	1 302
C2	3	2	2	2	1	1	1	_						1
C3	3	2	2	2	1	1	1	_		-	-	-		1
C4	3	2	2	2	2	1	1			-		-	-	-
C5	3	2	2	2	2	1	1	-+	-	-		-	3	2
Avg	3	2	1.8	2	1.4	1.2	1	_	-	-	-		1.2	1.2

	CE8403 Applied Hydraulic Engineering
C1	Apply their knowledge of fluid mechanics in addressing problems in open channels
C2	Able to identify a effective section for flow in different cross sections.
C3	To solve problems in uniform, gradually and rapidly varied flows in steady state conditions.
C4	Understand the principles, working and application of turbines
	Understand the principles, working and application of pumps.

	CE8491 Soil Mechanics
C1	Able to Characterize and classify soils and also determine Index properties
C2	Able to understands the concepts of stress and permeability in soils
C3	Able to Compute and analyze the consolidation settlements
C4	Able to Identify shear strength parameters for field conditions
C5	Able to understands the concepts of stability analysis of slope

					CE8	491	Soil M	echan	ics					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	2	-	3	-	2	1	-	-	-	2	-	2	2	1502
C2	1	-	-	-	2	_	2	_	_	1	_	2		2
C3	2	-	1	_	-	_	2			1		1	1	
C4	3	_	_	3	2		2		-	1		2	1	-
C5	3	1	_	-	2	_	3	-	2	2	-		1	3
Avg	2.2	1	2	3	2	1	2.2	-	2	1.6	-	1.8	1 2	1

	CE8404 CONCRETE TECHNOLOGY
C1	The various requirements of cement, aggregates and water for making concrete
C2	The effect of admixtures on properties of concrete
C3	The concept and procedure of mix design as per IS method
	The properties of concrete at fresh and hardened state
	The importance and application of special concretes

ON R. PALSON KENNEDY, M.E., Ph.D. PRINCIPAL PERI INSTITUTE OF TECHNOLOGY

Mannivakkam, Chennai - 600 U+3,

			CE84	04 CO	NCR	ETE T	ECH	NOLO	OGY				
PO1	PO2	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
3	3	2	2	3	2	2	-	_	3	2	1	2	1502
3	3	3	2	3	2	1	1		1	1	1	1	1
3	3	2	2	2	1	1			1	1	2	1	1
3	2	3	2	3	1	2	1		1	1		1	-
3	3	3	2	3	2	1	1		-	1	-	2	1
3	2.8	2.6	2	2.8	1.6	1 1	1	-	1.6	1 2	1.5	1 1	1
	PO1 3 3 3 3 3 3 3	PO1 PO2 3 3 3 3 3 3 3 2 3 3 3 2.8	PO1 PO2 PO3 3 3 2 3 3 2 3 2 3 3 2 3 3 3 3	PO1 PO2 PO3 PO4 3 3 2 2 3 3 3 2 3 3 2 2 3 2 3 2 3 3 3 2 3 3 3 2	PO1 PO2 PO3 PO4 PO5 3 3 2 2 3 3 3 2 2 3 3 3 2 2 2 3 2 3 2 3 3 3 3 2 3 3 3 3 2 3	PO1 PO2 PO3 PO4 PO5 PO6 3 3 2 2 3 2 3 3 2 3 2 3 3 2 2 2 1 3 2 3 2 3 1 3 3 3 2 3 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 2 2 3 2 2 3 3 2 3 2 1 3 3 2 2 2 1 1 3 2 3 2 3 1 2 3 3 3 2 3 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 2 2 3 2 2 - 3 3 2 2 3 2 1 1 3 3 2 2 2 1 1 - 3 2 3 2 3 1 2 1 3 3 3 2 3 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 2 2 3 2 2 - - 3 3 2 2 3 2 1 1 - 3 3 2 2 2 1 1 - - 3 3 3 2 3 1 2 1 - 3 3 3 2 3 2 1 1 -	3 3 2 2 3 2 2 - - 3 3 3 3 2 3 2 1 1 - 1 3 3 2 2 2 1 1 - - 1 3 2 3 2 3 1 2 1 - - 3 3 3 2 3 2 1 1 - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 2 2 3 2 2 - - 3 2 3 3 2 2 1 1 - 1 1 3 2 3 2 3 1 2 1 - - 1 3 3 3 2 3 2 1 1 - - 1 3 2 3 2 1 1 - - 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 2 2 3 2 2 - - 3 2 1 3 3 2 2 2 1 1 - 1 1 - 3 2 3 2 3 1 2 1 - - 1 - 3 3 3 2 3 2 1 1 - - 1 - 3 3 3 2 3 2 1 1 - - 1 - 3 2 3 2 3 2 1 1 - - 1 - 3 3 3 2 3 2 1 1 - - 1 - 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 2 2 3 2 1 2 1 2 1 2 1 2 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 - 1 - 1 - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - <t< td=""></t<>

		CE8		STRE	NGT	H OF	MAT	ERIA	LSL	ABOR	ATOR	V		
CO	PO1	PO ₂	PO ₃	PO4	PO5	PO ₆	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	2	1	1	2	3	3	-	-	3	3	-	2	1	3
C2	3	3	1	3	3	3		_	3	3	2	3		1
C3	3	3	2	3	2	2			3	2	2	2	2	1
C4	3	2	1	3	1	2	_		2	2	2	2		1
C5	2	1	3	2	3	2	_		2	2	2	2	2	1
Avg	2.6	2	1.6	2.6	2.4	2.4	-		2.6	2.6	2.2	26	1.6	1.6

	CE8481 STRENGTH OF MATERIALS LABORATORY	_
C1	Able to Understand the knowledge about properties of surfaces and solids.	
C2	Able to calculate the impact tests on steel bar	
C3	Able to perform flexural and torsion test to determine elastic constants	
C4	Able to Conduct compression tests on spring, wood and concrete	
C5	Able to calculate the deflection of springs	_

			CF	8461	Hydi	raulic	Engin	eering	Lab	orator	v			
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO ₆	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	2	3	2	1	3	2	-	-	1	2	1	1	1	2
C2	3	2	1	2	3	2		_	1	2	2	1	1	1
C3	3	1	2	1	1	3			1	2	1	1	2	1
C4	3	2	3	2	1	1	-	-	1	1	1	1	2	-
C5	2	2	1	2	2	1	-	-	1	1	1	1	1	1
-	3	3	1	2	2	1	-	-	1	2	2	2	2	-
Avg	2.8	2.2	1.8	1.6	2	1.8		-	1	1.8	1.4	1.2	1.5	1.67

	CE 8461 Hydraulic Engineering Laboratory
C1	The students will be able to study the Characteristics of pumps
C2	The students will be able to study the Characteristics of turbine
C3	The students will be able to measure flow in pipes and determine frictional losses.
C4	The students will be able to develop characteristics of pumps and turbines
C5	The students will be able to verify the principles studied in theory by performing the experiments in lab.

PRINCIPAL

	CE8501Design Of Reinforced Cement Concrete Elements
C1	Able to understand the basics of concrete design
C2	Able to emphasize the design of structural elements by limit state design method
C3	Able to understand the concrete of shear, bond and torsion
	Able to design the vertical compression member
	Able to understand the phenomenon about footing design.

		CE	8501 I	esign	Of R	einfor	ced C	ement	Conc	rete E	lement	-6		
CO	PO1	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	1	2	1	3	1	2	1	2	2	1	3	2	1
C2	3	2	2	3	3	2	1	2	1	2	1	2		2
C3	3	2	1	2	3	1	2	1	1	2	1	2	2	
C4	3	2	1	2	2	1	1	1	1	2	1	2	1	2
C5	3	2	1	3	3	1	1	1	1	1	1	2	1	
Avg	3	1.8	1.4	2.2	2.8	1.2	1.4	1.2	1.2	1.8	1	2.6	1 67	1 67

PO1	PO ₂	PO3	DO 4	T				alysis	-				
3		103	PO4	PO ₅	PO ₆	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
5	3	3	3	3	2	1	1	2	2	1	2	2	2
3	3	2	3	3	2	1	1	1	2	1	2	1	
3	3	3	3	3	2	1	1	1	2	1	2	2	
3	3	3	3	3	2	1	1	1	2	1	2	3	
3	3	3	3	3	2	1	1	1	2	1	2	-	-
3	3	2.8	3	3	2	1	1	1 2	2	1	2	-	-
	3 3 3 3 3	3 3	3 3 3	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2	3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1	3 3 3 3 2 1 1 3 3 3 3 2 1 1 3 3 3 3 2 1 1 3 3 3 3 2 1 1	3 3 3 3 2 1 1 1 3 3 3 3 2 1 1 1 3 3 3 3 2 1 1 1 3 3 3 3 2 1 1 1	3 3 3 3 2 1 1 1 2 3 3 3 3 2 1 1 1 2 3 3 3 3 2 1 1 1 2 3 3 3 3 2 1 1 1 2	3 3 3 3 2 1 1 1 2 1 3 3 3 3 2 1 1 1 2 1 3 3 3 3 2 1 1 1 2 1 3 3 3 3 2 1 1 1 2 1	3 3 3 3 2 1 1 1 2 1 2 3 3 3 3 2 1 1 1 2 1 2 3 3 3 3 2 1 1 1 2 1 2 3 3 3 3 2 1 1 1 2 1 2	3 3 3 3 2 1 1 1 2 1 2 3 3 3 3 3 2 1 1 1 2 1 2 3 3 3 3 3 2 1 1 1 2 1 2 - 3 3 3 3 2 1 1 1 2 1 2 -

	CE8502 Structural Analysis I
C1	Analyze continuous beams, pin-jointed indeterminate plane frames and rigid plane frames by strain energy method
C2	Analyse the continuous beams and rigid frames by slope defection method.
C3	Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.
C4	Analyse the indeterminate pin jointed plane frames continuous beams and rigid frames using matrix flexibility method.
C5	Understand the concept of matrix stiffness method and analysis of continuous beams, pin jointed trusses and rigid plane frames.

Dr. R. PALSON KENNEDY, M.E., Ph.D. PRINCIPAL

				CE859	1 FOU	JNDA'	TION	ENGI	NEER	ING				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	2	-	3	2	1	-	1	-	-	2	-	3	1	2
C2	3	1	-	1	2	-	2	_	_				2	
C3	3	-	1	-	-	2	-	-	_	1	_	_		1
C4	2	2	-	3	3	2	_	1	2		_		-	1
C5	3	-	1	1	-	2	1	1	-	1	_	1	1	1
Avg	2.6	1.5	1.6	1.7	2	2	1	1	2	1.3	_	2	1 3	1 3

	CE8591 Foundation Engineering	
C1	Understand the site investigation, methods and sampling	
C2	Get knowledge on bearing capacity and testing methods.	
C3	Design shallow footings.	
C4	Determine the load carrying capacity, settlement of pile foundation.	
	Determine the earth pressure on retaining walls and analysis for stability.	

			EN	18491	WAT	ER SI	JPPLY	YENC	INE	ERINC	7			
CO	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO'
C1	2	2	2	2	1	1	3	-	1	-	-	-	-	1
C2	2	2	2	1	1	1	2	_	1	_		_		1
C3	3	2	2	1	2	1	3	_	1				-	1
C4	3	2	2	2	2	1	3		1				-	1
C5	2	2	2	2	2	2	2	_	1				-	1
Avg	2.4	2	2	1.6	1.6	1.2	2.6	-	1	_				1

	EN8491 WATER SUPPLY ENGINEERING
C1	An insight into the structure of drinking water supply systems, including water transport, treatment and distribution
C2	The knowledge in various unit operations and processes in water treatment
C3	An ability to design the various functional units in water treatment
C4	An understanding of water quality criteria and standards, and their relation to public health
C5	The ability to design and evaluate water supply project alternatives on basis of chosen

	CE8511 Soil Mechanics Laboratory
C1	Classifying soil based on index properties of soils (course and fine).
C2	Classifying soil based on consistency limit of fine grained soils.
C3	Interpreting the shear strength of all types of soils by conducting lab tests
C4	Interpreting the shear strength of all types of soils by conducting lab tests
C5	Understanding the engineering properties of soils by conducting field tests

PRINCIPAL

			CE	8511 8	SOIL N	MECH	IANIC	S LAI	BORA	TORY	7			
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	-	2	3	-	2	1	-	1	2	-	-	2	1	2
C2	2	1	2	2	1	1	2	_	_	_			1	2
C3	3	1	1	2	1	1	-		_		_		1	
C4	1	2	2	1	3	2	-	3	_	_	3		2	
C5	1	1	2	-	1	- 1	-	-	1	_	2	2	3	1
Avg	1.7	1.4	2	1.6	1.6	1.2	2	2	1.5	_	2.5	2	1.6	1.6

	CE8512 Water And Waste Water Analysis Laboratory
C1	Quantify the pollutant concentration in water and wastewater
C2	Suggest the type of treatment required and amount of dosage required for the treatment
C3	Examine the conditions for the growth of micro-organisms
	Suggest the type of treatment required to reduce e-coli in water
C5	Compare the analysis of treated water among different treatments

	CE	8512 V	VATE	RAN	D WA	STE V	VATE	RAN	ALYS	IS LA	BORA	TORY	7	
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	-	-	2	-	1	1	-	-	-	-	2	-	3
C2	3	-	2	2	_	_	_	_				2		2
C3	3	-	2	2	_	_		_			-	2	1	3
C4	3		2	1							-	1	1	
C5	3	_	2	1		_			-		-	1	1	-
Avg	3	-	2	1.6	-	1	1		-	-	-	1.6	1.2	2.2

								Y CAN						
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	3	2	2	2	3	1	1	2	3	3	2	1	2
C2	3	2	2	3	1	2	1	1	2	3	3	2	2	
C3	3	2	2	2	1	2	1	1	2	3	3	3	2	3
C4	3	3	2	3	1	2	1	1	2	3	3	2	- 4	1
C5	3	2	2	2	1	2	1	1	2	3	3	3		1
Avg	3	2.4	2	2.4	1.2	2.2	1	1	2	3	3	2.4	1.6	2

	CE8513 SURVEY CAMP
C1	To use all surveying equipment, prepare LS &CS
C2	To prepare contour maps by triangulation method
C3	To prepare maps and grids by Trilateration method
C4	To prepare contour maps by Rectangulation method
C5	

		CE8	8601 E	ESIG	N OF	STE	EL ST	RUC	TURA	AL EL	EMEN	ITS		
CO	PO1	PO ₂	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	3	3	3	2	1	1	1	2	1	2	2	2	1
C2	3	3	3	3	2	1	2	1	1	1	1	2	1	-
C3	3	2	3	2	2	1	1	1	2	1	2	2	1	1
C4	3	2	2	3	2	1	1	1	1	1	1	2	2	
C5	3	3	3	2	2	1	1	1	1	1	2	2	2	
Avg	3	2.6	2.8	2.6	2	1	1.2	1	1.4	1	1.6	2	1.6	1

	CE8601 DESIGN OF STEEL STRUCTURAL ELEMENTS
C1	Able to understand the concepts of various design philosophies
C2	Able to design common bolted and welded connections for steel structures
C3	Able to design tension members and understand the effect of shear lag.
C4	Able to understand the design concept of axially loaded columns and column base connections.
C5	Able to understand specific problems related to the design of laterally restrained and unrestrained steel beams.

				CE860	2 ST	RUC	ΓURA	LAN	ALYS	IS II				
CO	PO1	PO ₂	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	2	2	1	1	2	_	-	1	-	1	1	-	1	-
C2	2	2	2	1	2	-	-	1	_	1	1		1	
C3	2	2	1	2	3	-	_	-	1	2	1	_	_	1
C4	2	2	1	1	2	1	_	-	1	-	1	3	2	1
C5	2	2	1	2	2	1	-	-	1	2	1	_		1
Avg	2	2	1.2	1.4	2.2	1	-	1	1	1.5	1	3	1.3	1

	CE8602 Structural Analysis II
C1	Able to draw influence lines for statically determinate structures and calculate critical stress resultants.
C2	Ability to understand Muller Breslau principle and draw the influence lines for statically indeterminate beams.
C3	Able to analyse of three hinged two hinged and fixed arches.
C4	Able to analyse the suspension bridges with stiffening girders
C5	Able to understand the concept of Plastic analysis and the method of analyzing beams and rigid frames.

PRINCIPAL

	CE8604 HIGHWAY ENGINEERING
C1	Able to get knowledge on planning and aligning of highway.
C2	Able to geometric design of highways
C3	Able to design flexible and rigid pavements.
C4	Able to gain knowledge on Highway construction materials, properties, testing methods
C5	Able to understand the concept of pavement management system, evaluation of distress and maintenance of pavements.

				CE860		IGHV	VAY I	ENGI	NEER	RING				
CO	PO1	PO ₂	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	1	1	-	2	2	2	1	-	1	-	_	2	1
C2	1	2	3	1	1	1	1	-	-	1	-	-	-	-
C3	1	3	3	2	2	1	1	-	-	1	-	-	2	2
C4	1	1	3	-	-	-	1	-	-	1	_	_	1	1
C5	1	2	3	-	-	-	1	-	-	1	-	-	-	
Avg	1.4	1.8	2.6	1.5	1.6	1.3	1.2	1	-	1	-	-	1.6	1.3

			(CE860	3 IRR	IGAT	TION	ENGI	NEEF	RING				
CO	PO1	PO ₂	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	2	1	3	2	1	2	2	2	3	2	1	2	2	-
C2	3	2	1	3	1	1	3	1	2	1	2	3	_	1
C3	3	3	2	1	1	2	1	1	1	1	1	3	-	2
C4	1	3	3	2	1	1	1	1	2	1	1	2	1	3
C5	2	2	2	2	1	1	2	1	1	1	1	2	2	1
Avg	2.2	2.2	2.2	2	1	1.4	1.8	1.2	1.8	1.2	1.2	2.4	1.67	1.75

	CE8603 IRRIGATION ENGINEERING	
C1	Able to have knowledge and skills on crop water requirements.	
C2	Able to understand the methods and management of irrigation.	
C3	Able to gain knowledge on types of Impounding structures	
C4	Able to understand methods of irrigation including canal irrigation.	
C5	Able to get knowledge on water management on optimization of water use.	

	EN8592 WASTEWATER ENGINEERING
C1	An ability to estimate sewage generation and design sewer system including sewage pumping stations
C2	The required understanding on the characteristics and composition of sewage, self- purification of streams
C3	An ability to perform basic design of the unit operations and processes that are used in sewage treatment
C4	Understand the standard methods for disposal of sewage.
C5	Gain knowledge on sludge treatment and disposal.

Dr. R. PALSON KENNEDY, M.E., Ph.M.,
PRINCIPAL
PERI INSTITUTE OF TECHNOLOGY
Marinivakkam, Chennai - 600 048.

			E	N8592	WAS	STEW	ATER	ENG	INEE	RING				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	2	3	3	2	3	1	1	1	-	-	-	1	1
C2	3	3	3	2	2	2	3	2	1	-	_	-	2	1
C3	2	2	2	1	1	1	2	2	1	-	-	_	2	1
C4	2	2	2	1	1	1	2	2	1	_	_	_	2	
C5	2	2	2	1	1	1	2	2	1	-	-	-	2	_
Avg	2.4	2.2	2.4	1.6	1.4	1.6	2	1.8	1	-	_		1.8	1

				E8611		hway	Engin	eering	Labo	ratory	7			
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C1	2	-	1	1	1	-	1	_	3	1	-	1	-	3
C2	2	-	1	1	1	-	1	-	3	1	_	1	_	3
C3	_	-	1	1	1	-	1	-	3	1	_	1	1	
C4	2	-	1	1	1	-	1	-	3	1	-	1	1	
C5	2	-	1	1	1	-	1	-	3	1	-	1	2	1
Avg	2	-	1	1	1	-	1	_	3	1	-	1	1 3	2 3

	CE6612 Highway Engineering Laboratory
C1	To impart the knowledge of material testing for use in concrete
C2	To understand the mix design for concrete
C3	Able to determine the properties of fresh concrete
C4	Able to determine the properties of hardened concrete
C5	Able to know the techniques to characterize various pavement materials through relevant tests

	CE8701 ESTIMATION, COSTING AND VALUATION ENGINEERING
C1	Able to estimate the quantities of item of works involved in buildings
C2	Able to estimate the water supply and sanitary works, road works and irrigation works
C3	Able to prepare a bill of quantities, make specifications and prepare tender documents
C4	Able to get the knowledge for valuation of properties
C5	Able to prepare the reports for estimation of various items.

PRINCIPAL

	CE87	01 E	STIM	IATIO	ON, C	OSTI	NG A	ND VA	ALUA	TION	ENGI	NEER	ING	
CO	PO1												PSO1	PSO
C1	3	-	-	-	-	-	-	-	2	-	-	2	-	2
C2	3	-	-	-	-	1	-	-	2	-	-	2	-	2
C3	3	-	-	-	-	-	-	2	2	2	1	2	2	2
C4	3	-	-	-	-	-	-	-	2	-	2	2	-	2
C5	2	-	-	-	-	-	-	2	-	3	-	2	2	_
Avg	2.8	-	-	-	-	1	-	2	2	2.5	1.5	2	2	2

C	E8702	RAI	LWA	YS, A	IRPO	RTS, I	OOCK	SANI	D HA	RBOU	R ENC	GINEE	RING	
CO	PO1	PO2	PO3	PO4	PO5	PO ₆	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	3	2	3	3	2	3	-	-	2	-	3	-	3
C2	3	2	2	2	3	- 1	2	-	-	2	2	3	1	2
C3	2	1	2	1	3	-	2	-	3	3	-	2	-	2
C4	1	1	3	1	3	2	-	1	2	_	3	3	2	2
C5	3	2	3	2	3	-	2	-	2	-	-	2	3	
Avg	2.4	1.8	2.4	1.8	3	2	2.2	1	2.3	2.3	2.5	2.6	2	2.2

	CE8702 RAILWAYS, AIRPORTS, DOCKS AND HARBOUR ENGINEERING
C1	Able to Plan and Design various civil Engineering aspects of Railways
C2	Able to have an idea about construction and maintenance systems in railway
C3	Ability to create the layouts and components of airport
C4	Able to evaluate the geometric design of airports.
C5	Understand the various terms in harbor engineering and its classification.

	CE8703 STRUCTURAL DESIGN AND DRAWING
C1	Able to design and draw reinforced concrete Cantilever and Counterfort Retaining Walls
C2	Able to design and draw flat slab as per code provisions
C3	Able to design and draw reinforced concrete and steel bridges
C4	Ability to design and draw reinforced concrete and steel water tanks
C5	Able to design and detail the various steel trusses and cantry girders

		C	E870	3 STI	RUCT	URA	L DE	SIGN	AND	DRA	WING	t r		
CO	PO1	PO ₂	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C1	2	2	1	2	2	-	1	-	_	-	-	1	2	-
C2	2	2	-	1	1	-	-	-	-	-	-	1	1	_
C3	2	1	1	1	-	1	1	-	-	_	_	1	-	1
C4	1	1	3	2	-	-	1	-	-	_	_	1	_	
C5	1	-	1	1	1	-	1	-	-	_	-	1	1	
Avg	1.6	1.5	1.5	1.4	1.3	1	1	-	_	N -	-	1 .	1/3	1

PRINCIPAL

			CE8	711CR	EATIV	VE AN	D INN	OVAT	IVE P	ROJEC	CT			
CO	PO1	PO2	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
C1	3	3	3	3	3	3	3	3	1	3	3	3	3	2
C2	3	3	2	2	2	2	2	-	3	-	-	2	2	
C3	3	3	2	2	2	2	2	1	-	2	1	1	3	1
C4	3	2	3	2	3	-	1	1	-	2	1	1	3	
C5	3	2	2	2	3	2	1	1	-	2	1	1	3	1
Avg	3	2.6	2.4	2.2	2.6	1.8	1.8	1.5	2	2.2	1.5	1.6	2.8	1.3

	CE8711 CREATIVE AND INNOVATIVE PROJECT
C1	Will get experience in designing various design problems related to civil Engineering
C2	Able to understand the meaning of team work
C3	To impart and improve the design capability of the student
C4	Analysis and design of structure to meet desired needs within realistic constraints
C5	Able to improve the design of an RC structure

				CE8	016	Groui	idwate	er Eng	ineeri	ng				
CO	PO1	PO2	PO3	PO4						PO10	PO11	PO12	PSO1	PSO
C1	2	-	1	2	1	1	2	-	_	-	-	-	1	-
C2	3	3	1	2	1	-	1	-	-	_	-	-	3	
C3	1	2	1	1	3	-	2	-	_	_	_	-	-	2
C4	1	-	1	1	2	3	2	- 1	_	_	-	_		1
C5	1	2	1	2	2	1	3	_	-	-	-	_	_	2
Avg	1.6	2.3	1	1.6	1.8	1.6	2	-	-	-	-	-	2	1.6

	CE8016 Groundwater Engineering
C1	Able to know the aquifer properties and its dynamics
C2	Able to understand the principles of groundwater governing equations
C3	Able to understand the techniques of development and management of groundwater
C4	Able to understand concepts of groundwater quality.
C5	Able to understand the importance of artificial recharge

	EN8591 Municipal Solid Waste Management
C1	Able to know the sources and characteristics of solid waste
C2	Able to understand the merits of 3R's
C3	Able to gain knowledge on collection, segregation and transfer of MSW
C4	Able to understand the different processing methodology for MSW
C5	Able to gain knowledge on effective disposal of MSW

PRINCIPAL

				8591	Mun	icipal	Solid	Waste	e Man	ageme	nt			
CO	PO1	PO ₂	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C1	3	-	-	-	-	1	2	-	-	-	-	2	2	-
C2	2	-	-	-	-	-	3	-	-	_	_	2	_	_
C3	2	-	2	-	2	1	-	-	_	_	-	-	_	3
C4	-	-	1	-	-	1	2	_	_	_	_	_	1	
C5		-	2	-	-	2	3	-	-	-	_	2	1	2
Avg	2.3	-	1.6	-	2	1.2	2.5	-	-	-	-	2	1	2.5

CE	8020 M	AINT	ENA	ICE, I	REPA	IR AN	ND RE	HAB	ILITA	TION	OF S	TRUC	TURE	CS
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C1	3	1	2	-	1	1	2	-	1	3	1	3	_	2
C2	3	2	1	3	3	_	-	- 1	1	2	1	3	3	1
C3	3	3	1	1	3	1	1	-	1	1	1	2	_	1
C4	3	1	1	1	1	1	2	-	1	1	1	3	2	
C5	3	2	1	3	3	-	-	-	2	1	1	3	1	-
Avg	3	1.8	1.2	2	2.2	1	1.6	-	1.2	1.6	1	2.8	2	1.3

C	E8020 MAINTENANCE, REPAIR AND REHABILITATION OF STRUCTURES
C1	To gain the knowledge on quality of concrete, durability aspects, causes of deterioration
C2	To gain the knowledge on assessment of distressed structure
C3	To gain the knowledge on repairing methodology of structure
C4	To get to know about special concrete
C5	To obtain more knowledge about retrofitting

	CE6811 Project Work	
C1	Able to understand work methodology adopted in industry	
C2	Able to find solution for the difficulty during construction	
C3	Able to understand the meaning of teamwork	
C4	Able to give practical knowledge regarding projects	
C5	Able to give the idea to finish work on time	

	CE8811 Project Work CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO	PO1	PO2	PO ₃	PO ₄	PO5	PO ₆	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	
C1	3	3	3	3	2	2	2	2	2	3	3	3	2	2	
C2	2	2	3	3	3	2	2	2	2	3	3	3	2	2	
C3	3	2	3	2	3	2	2	3	3	2	3	3	3	3	
C4	2	3	3	2	2	3	3	3	3	2	3	3	3	3	
C5	2	3	3	3	2	2	3	3	2	3	3	3	3	2	
Avg	2.4	2.6	3	2.6	2.4	2.2	2.4	2.6	2.4	2.6	3	3	2.6	2.4	

DT. R. PALSON RENNEDY, M.E., Ph.O., PRINCIPAL
PERI INSTITUTE OF TECHNO

om, Chennul

PERI INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRONICS AND COMMUNICATION **ENGINEERING**

Mapping of Course outcome with program outcome

Regulation -2017

CO	MA8352-Linearalgebraandpartialdifferentialequations
CO 1	To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
CO 2	Demonstrate accurate and efficient use of advanced algebraic techniques
CO 3	Demonstrate their mastery by solving non - trivial problems related to the concepts and by simple theorems about the statements proven by the text.
CO 4	Able to solve various types of partial differential equations.
CO 5	Able to solve engineering problems using Fourier series

CO					1	20							PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1						1	1	2	2	1
CO ₂	2	2	2	1	1						1	1	2	2	1
CO 3	2	2	2	1	1						1	1	2	2	1
CO 4	3	3	3	2	2						2	. 2	3	3	2
CO 5	3	3	3	2	2						2	2	3	3	2

CO	EC8393-FUNDAMENTALSOFDATASTRUCTURESINC
CO 1	Implement linear and non-linear data structure operations using C
CO 2	Suggest appropriate linear / non-linear data structure for any given data set.
CO 3	Apply hashing concepts for a given problem
CO 4	Modify or suggest new data structure for an application
CO 5	Appropriately choose the sorting algorithm for an application

СО]	PO						Y		PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	3	2	2	2					3	3	3	3	2	
CO 2	2	2	2	2	2	2					2	2	2	2	1	
CO 3	3	3	3	2	2	2					3	3	3	3	2	
CO 4	2	2	2	2	2	2			111		2	2	2	2	1	
CO 5	2	2	2	2	2	2					2	2	2	2	1	

Dr. R. PALSON KENNEDY, M.E., Ph.D.,

PRINCIPAL

CO	EC8351-ELECTRONICCIRCUITS1
CO 1	Acquire knowledge of Working principles, characteristics and applications of BJT and FET
CO 2	Acquire knowledge of Frequency response characteristics of BJT and FET amplifiers
CO 3	Analyze the performance of small signal BJT and FET amplifiers-single stage and multistage amplifiers
CO 4	Analyze the of Frequency response of amplifiers
CO 5	Apply the knowledge gained in the design of Electronic circuits

СО						PO								PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	2	1	1	1					1	2	2	1	2	
CO 2	2	2	2	1	1	1					1	2	2	1	2	
CO3	3	3	3	2	2	2					2	3	3	2	3	
CO 4	3	3	3	2	2	2					2	3	3	2	3	
CO 5	3	3	3	2	2	2					2	3	3	2	3	

CO	EC8352-SIGNALSANDSYSTEMS
CO 1	Determine if a given system is linear/causal/stable
CO 2	Capable of determining the frequency components present in a deterministic signal
CO 3	Capable of characterizing LTI systems in the time domain and frequency domain
CO 4	Compute the output of an LTI system in the time and frequency domains
CO 5	Analyze the Discrete time signals using Transforms

CO						PO								PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	2	2	2	1					1	2	3	3	3	
CO 2	3	3	2	2	2	1					1	2	3	3	3	
CO 3	2	2	1	1	1	0					0	1	2	2	2	
CO 4	3	3	2	2	2	1					1	2	3	3	3	
CO 5	3	3	2	2	2	1					1	2	3	3	3	

CO	EC8392-DIGITALELECTRONICS
CO 1	Use digital electronics in the present contemporary world
CO 2	Design various combinational digital circuits using logic gates
CO 3	Do the analysis and design procedures for synchronous and asynchronous sequential circuits
CO 4	Use the semiconductor memories and related technology
CO 5	Use electronic circuits involved in the design of logic gates
	Dr. R. PALSON KENNEDY, M.E., Ph.D.

PRINCIPAL

СО			PO											PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	3	2	2	2	1					1	2	3	2	2		
CO 2	3	3	2	2	2	1					1	2	3	2	2		
CO 3	3	3	2	2	2	1					1	2	3	2	2		
CO 4	3	3	2	2	2	1					1	2	3	2	2		
CO 5	3	3	2	2	2	1					1	2	3	2	2		

CO	EC8391-CONTROLSYSTEMSENGINEERING
CO 1	Identify the various control system components and their representations.
CO 2	Analyze the various time domain parameters.
CO 3	Analyze the various frequency response plots and its system.
CO 4	Apply the concepts of various system stability criterions.
CO 5	Design various transfer functions of digital control system using state variable models.

СО			PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	1					1	1	2	2	1	
CO 2	3	3	2	2	2	2					2	2	3	3	2	
CO 3	3	3	2	2	2	2					2	2	3	3	2	
CO 4	3	3	2	2	2	2					2	2	3	3	2	
CO 5	3	3	2	2	2	2					2	2	3	3	2	

CO	EC8381-Fundamentalsofdatastructuresinclaboratory	
CO 1	Write basic and advanced programs in C	
CO 2	Implement functions and recursive functions in C	
CO3	Implement data structures using C	
CO 4	Choose appropriate sorting algorithms for an application	
CO 5	Choose appropriate sorting algorithm to implement in a modularized way	

CO				PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	1	1	1	1					2	2	1	1	1
CO 2	3	3	2	2	2	2					3	3	2	2	2
CO 3	3	3	2	2	2	2					3	3	2	2	2
CO 4	2	2	1	1	1	1					2	2	1	1	1
CO 5	2	2	1	1	1	1					2	2	1 .	0 1	1

PRINCIPAL

CO	EC8361-Analoganddigitalcircuitslaboratory
CO 1	Design and Test rectifiers, filters and regulated power supplies.
CO 2	Design and Test BJT/JFET amplifiers.
CO 3	Differentiate cascode and cascade amplifiers.
CO 4	Analyze the limitation in bandwidth of single stage and multi stage amplifier & Measure CMRR in differential amplifier
CO 5	Simulate and analyze amplifier circuits using P Spice. & Design and Test the digital logic circuits

CO			PO						0.000				PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	3	3	3	2					3	3	3	2	2	
CO 2	3	3	3	3	3	2					3	3	3	2	2	
CO 3	3	3	2	2	2	2					2	2	2	1	1	
CO 4	3	3	3	3	3	2					3	3	3	2	2	
CO 5	3	3	3	3	3	2					3	3	3	2	2	

CO	HS8381InterpersonalSkills/Listening & Speaking
CO 1	Learn the importance of interpersonal skills
CO 2	Recognize the importance of interpersonal skills
CO 3	Understand how good communication with other can influence our working relationships
CO 4	Describe how good communication with other can influence our working relationships
CO 5	outline the roles we play in our work groups and teams

СО		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1						1		1	1	1	1	1	1	1	1
CO 2						2		2	2	2	2	2	2	2	2
CO 3						2		2	2	2	2	2	2	2	2
CO 4						2		2	2	2	2	2	2	2.	2
CO 5						2		2	2	2	2.	2	2	2	2

CO	MA8451-PROBABILITYANDRANDOMPROCESSES
CO 1	Understand the fundamental knowledge of the concepts of probability and have
	knowledge of standard distributions which can describe real life phenomenon.
CO 2	Understandthebasicconceptsofoneandtwodimensionalrandomvariablesandapplyinengineeringapp
	lications.
CO 3	Apply the concept random processes in engineering disciplines.
CO 4	Understand and apply the concept of correlation and spectral densities
	The students will have an exposure of various distribution functions and help in acquiring
CO 5	1.1.111 1. 1. 1111 1. 11. 11. 11. 11. 1
	response of random in puts to linear time in variant systems nivokkom, Chennal - 600 048.
	- 600 048.

СО]	PO							PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1						1	1	1	1	0	
CO 2	2	2	1	1	1						1	1	1	1	0	
CO 3	3	3	2	2	2						2	2	2	2	0	
CO 4	2	2	1	1	1						1	1	1	1	0	
CO 5	3	3	2	2	2						2	2	2	2	0	

CO	EC8452-ELECTRONICCIRCUITSII
CO 1	Design and analyze feedback amplifiers
CO 2	Design and analyze RC and LC Oscillators
CO 3	Design and analyze tuned amplifiers
CO 4	Design and analyze wave shaping circuits, multivibrators
CO 5	Design power amplifier and DC convertors.

СО							P	0					PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	2	2	1	1					1	1	2	2	2	
CO 2	3	3	3	3	0	0					0	0	1	1	1	
CO 3	3	3	2	2	1	1					1	1	2	2	2	
CO 4	3	3	3	3	0	0					0	0	1	1	1	
CO 5	3	3	3	3	0	0					0	0	1	1	1	

CO	EC8491-COMMUNICATIONTHEORY
CO 1	Design AM communication systems
CO 2	Design Angle modulated communication systems
CO 3	Apply the concepts of Random Process to the design of Communication systems
CO 4	Analyze the noise performance of AM and FM systems
CO 5	Gain knowledge in sampling and quantization

CO							P)						PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	2	2	2	2					2	2	2	2	1	
CO 2	3	3	2	2	2	2					2	2	2	2	1	
CO 3	3	3	2	2	2	2					2	2	2	2	1	
CO 4	3	3	3	3	3	3					3	3	3	3	2	
CO 5	2	2	2	2	0	0					.0	, D	2	2	2	

CO	EC8451-ELECTROMAGNETICFIELDS
CO 1	Display an understanding of fundamental electromagnetic laws and concepts
CO 2	Write Maxwell's equations in integral, differential and phasor forms and explain their physical meaning
CO 3	Explain electromagnetic wave propagation in lossy and in lossless media
CO 4	Solve simple problems requiring estimation of electric field quantities based on these concepts and laws
CO 5	Solve simple problems requiring estimation of magnetic field quantities based on these concepts and laws

CO							P	O					PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	1	1	1	1	1	1					1	1	1	1	1	
CO 2	2	2	2	2	2	2					2	2	2	2	2	
CO 3	1	1	1	1	1	1					1	1	1	1	1	
CO 4	3	3	3	3	3	3					3	3	3	3	3	
CO 5	3	3	3	3	3	3					3	3	3	3	3	

CO	EC8453-LINEARINTEGRATEDCIRCUITS	***
CO 1	Design linear and non linear application of OP-AMP	
CO 2	Design Application using analog multiplier and PLL	
CO 3	Design ADC and DAC using OP-AMP	
CO 4	Generate waveforms using OP – AMP Circuits	
CO 5	Analyze special function Ics	

CO			-				P	O					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	2	2	1	1	1/6				1	1	2	2	1	
CO 2	3	3	2	2	1	1					1	1	2	2	1	
CO 3	3	3	2	2	1	1					1	1	2	2	1	
CO 4	3	3	2	2	1	1					1	1	2	2	1	
CO 5	3	3	3	3	2	2					2	2	3	3	2	

СО	GE8291-Environmentalscienceandengineering
CO 1	Environmental Pollution or problems cannot be solved by mere laws.
CO 2	Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
CO 3	Public awareness of environmental is at infant stage.
CO 4	Ignorance and incomplete knowledge has lead to misconceptions
CO 5	Development and improvement in standard. of living has lead to serious environmental disasters

Dr. R. PALSON KENNEDY, M.E., Ph.D.,
PRINCIPAL
PERI INSTITUTE OF TECHNOLOGY
Mannivakkam, Chennai - 600 U/8.

CO							P	O					PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	1	1		1		1	1	1		1		1				
CO 2	2	2		2		2	2	2		2		2				
CO 3	2	2		2		2	2	2		2		2				
CO 4	2	2		2		2	2	2		2		2				
CO 5	2	2		2		2	2	2		2		2				

CO	EC8461-Circuitsdesignandsimulationlaboratory
CO 1	
CO 2	Design oscillators, tuned amplifiers, wave-shaping circuits and multivibrators
CO ₃	Design and simulate feedback amplifiers, oscillators using SPICE Tool
CO 4	Design and simulate tuned amplifiers, wave-shaping circuits using SPICE Tool
CO 5	Design and simulate multi vibrators using SPICE Tool

CO		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	2	2	2	2					2	2	2	2	3
CO 2	3	2	1	1	1	1					1	1	1	1	2
CO3	3	2	1	1	1	1					1	1	1	1	2
CO 4	3	2	1	1	1	1					1	1	1	1	2
CO 5	3	2	1	1	1	1					1	1	1	1	2

CO	EC8462-Linearintegratedcircuitslaboratory
CO 1	Design amplifiers, oscillators, D-A converters using operational amplifiers.
CO ₂	Design filters using op-amp and performs an experiment on frequency response.
CO ₃	Analyze the working of PLL and describe its application as a frequency multiplier.
CO 4	Design DC power supply using ICs.
CO 5	Analyze the performance of filters, multivibrators, A/D converter and analog multiplier using SPICE.

CO		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	2					3	3	3	3	2
CO 2	3	3	3	3	3	2					3	3	3	3	2
CO 3	3	3	2	2	2	1					2	2	2	2	1
CO 4	3	3	3	3	3	2					3	3	3	3	2
CO 5	3	3	2	2	2	1					2	2	2	2	1

PRINCIPAL

CO	EC8501-DIGITALCOMMUNICATION
CO 1	Describe the operating principles of information theory
CO 2	Design and implement base band transmission schemes
CO 3	Design and implement band pass signaling schemes
CO 4	Analyze the spectral characteristics of band pass signaling schemes and their noise performance
CO 5	Design error control coding schemes

CO							Po	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	2	0	0					1	1	2	1	1	
CO 2	3	3	2	3	1	1					2	2	3	2	3	
CO 3	3	3	2	3	1	1					2	2	3	2	3	
CO 4	3	3	3	3	2	2					3	3	3	2	3	
CO 5	3	3	2	3	1	1					2	2	3	2	3	

CO	EC8553-DISCRETETIMESIGNALPROCESSING
CO 1	Apply DFT for the analysis of digital signals and systems
CO 2	Design IIR and FIR filters
CO3	Characterize the effects of finite precision representation on digital filters
CO 4	Design multirate filters
CO 5	Apply adaptive filters appropriately in communication systems

CO							P	C					PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	2	2	2	1					1	2	3	3	2
CO 2	3	3	2	2	2	1					1	2	3	3	2
CO 3	3	3	2	2	2	1					1	2	3	3	2
CO 4	3	3	2	2	2	1					1	2	3	3	2
CO 5	3	3	2	2	2	1					1	2	3	3	2

CO	EC8552-Computerarchitecture and Organization
CO 1	Describe data representation, instruction formats and the operation of a digital computer
CO 2	Illustrate the fixed point and floating-point arithmetic for ALU operation
CO3	Discuss about implementation schemes of control unit and pipeline performance
CO 4	Explain the concept of various memories, interfacing and organization of multiple processors
CO 5	Discuss parallel processing technique and unconventional architectures

PRINCIPAL

CO			172.15				P	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	2	1	1	1	0	0	0	0	0	1	2	2	2	
CO 2	2	2	2	1	1	1	0	0	0	0	0	1	2	2	2	
CO 3	3	3	3	2	2	2	0	0	0	0	0	2	3	3	3	
CO 4	2	2	2	1	1	1	0	0	0	0	0	1	2	2	2	
CO 5	2	2	2	1	1	1	0	0	0	0	0	1	2	2	2	

CO	EC8551-COMMUNICATIONNETWORKS
CO 1	Identify the components required to build different types of networks
CO 2	Choose the required functionality at each layer for given application
CO 3	Identify solution for each functionality at each layer
CO 4	Trace the flow of information from one node to another node in the network
CO 5	Summarize the various Application requirements

CO						4	P	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	
CO 2	2	2	1	1	1	1	0	0	0	0	0	2	2	2	2	
CO 3	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	
CO 4	2	2	1	1	1	1	0	0	0	0	0	2	2	2	2	
CO 5	2	2	1	1	1	1	0	0	0	0	0	2	2	2	2	

CO	ORO551- RENEWABLE ENERGY SOURCE
CO 1	Exposure on solar radiation and its environment impact of power
CO 2	Learn the various collectores used for storing solar energy
CO3	Understand the various applications in solar energy
CO 4	Study about the wind energy and biomass and its economic aspects
CO 5	Learn about geothermal energy with other energy sources

CO		PO													PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO 1	2	1										1	1	1	1			
CO 2	2	1										1	1	1	1			
CO 3	2	1										1	1	1	1			
CO 4	2	1										1	1	1	1			
CO 5	2	1										1	1	1	1			

CO	GE8077-TOTALQUALITYMANAGEMENT
CO 1	Discuss various dimensions of product and service quality
CO 2	Apply the TQM principles for quality improvement in organization
CO 3	Apply the TQM principles for quality improvement in organization
CO 4	Use QFD tool to design and develop a new product as per customer requirements.
CO 5	Explain various ISO Standards and Quality systems practiced in various sector

CO							P	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1						2	2	2	2	2	1	2	0	2	1	
CO 2						3	3	3	3	3	2	2	1	3	2	
CO 3						3	3	3	3	3	2	2	1	3	2	
CO 4						3	3	3	3	3	2	2	1	3	2	
CO 5						2	2	2	2	2	1	2	0	2	1	

CO	EC8562-Digitalsignalprocessinglaboratory
CO 1	Carryout basic signal processing operations
CO 2	Demonstrate their abilities towards MATLAB based implementation of various DSP systems
CO 3	Analyze the architecture of a DSP Processor
CO 4	Design and Implement the FIR and IIR Filters in DSP Processor for performing filtering operation over real-time signals
CO 5	Design a DSP system for various applications of DSP

CO							Po	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	1					1	1	2	2	1	
CO 2	3	3	2	2	2	2					2	2	3	3	2	
CO 3	3	3	3	3	3	3					3	3	3	3	3	
CO 4	3	3	2	2	2	2					2	2	3	3	2	
CO 5	3	3	2	2	2	2					2	2	3	3	2	

CO	EC8561-COMMUNICATIONSYSTEMLABORATORY
CO 1	Simulate & validate the various functional modules of a communication system
CO 2	Demonstrate their knowledge in base band signaling schemes through implementation of digital modulation schemes
CO 3	Apply various channel coding schemes
CO 4	Demonstrate their capabilities towards the improvement of the noise performance of communication system Simulate end-to-end communication Link PRINCIPAL
CO 5	Simulate end-to-end communication Link PRINCIPAL

СО							P)					PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	2	2	1	2	1					3	3	3	3	3	
CO 2	3	2	2	1	2	1					0	0	2	2	2	
CO 3	3	2	2	1	2	1					0	0	2	2	2	
CO 4	3	2	2	1	2	1					0	0	2	2	2	
CO 5	3	2	2	1	2	1					3	3	3	3	3	

CO	EC8563-COMMUNICATIONNETWORKSLABORATORY	
CO 1	Communicate between two desktop computers	
CO 2	Implement the different protocols	
CO 3	Program using sockets.	
CO 4	Implement and compare the various routing algorithms	
CO 5	Use the simulation tool.	

CO		1					P	O					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	2	1	1	2	2					2	2	3	2	2	
CO 2	3	2	1	1	2	2					2	2	3	2	2	
CO3	3	2	1	1	2	2					2	2	3	2	2	
CO 4	3	2	2	2	3	3					3	3	3	3	3	
CO 5	3	2	1	1	2	2					2	2	3	2	2	

CO	EC8691-MICROPROCESSOR AND MICROCONTROLLER
CO 1	Understand the Architecture of 8086 microprocessor.
CO 2	Learn the design aspects of I/O and Memory Interfacing circuits.
CO 3	Interface microprocessors with supporting chips.
CO 4	Study the Architecture of 8051 microcontroller.
CO 5	Design a microcontroller based system

CO			PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	2	2	1	1					1	1	2	2	1
CO 2	2	2	2	2	1	1					1	1	2	2	1
CO 3	3	3	3	3	3	3					2	2	3	3	2
CO 4	2	2	2	2	1	1			X	Pa	$\cap 1$	N 10/	2	2	1
CO 5	3	3	3	3	2	2		Di.V	. PALS	CNE	NATO	, ARE., 1	15.13	3	2

PRINCIPAL

CO	EC8095-VLSIDESIGN	
CO 1	Realize the concepts of digital building blocks using MOS transistor.	M
CO 2	Design combinational MOS circuits and power strategies.	
CO 3	Design of memory elements in sequential circuits.	
CO 4	Design arithmetic building blocks and memory subsystems.	
CO 5	Apply and implement FPGA design flow and testing.	

CO							P	O					PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	1					1	2	2	2	2	
CO 2	3	3	2	2	2	2					2	2	3	3	3	
CO3	3	3	2	2	2	2					2	2	3	3	3	
CO 4	3	3	2	2	2	2					2	2	3	3	3	
CO 5	3	3	2	2	2	2					2	2	3	3	3	

CO	EC8652-WIRELESSCOMMUNICATION	
CO 1	Study the characteristic of wireless channel	
CO 2	Design a cellular system based on resource availability and traffic demands	
CO 3	Study the various digital signaling techniques for fading channel	
CO 4	Apply various multipath mitigation techniques	
CO 5	Understand the concepts of multiple antenna techniques	

CO							P	0					PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	1	1	1	1					1	2	3	2	2
CO 2	3	3	2	2	2	2					2	3	3	3	3
CO 3	2	2	1	1	1	1					1	2	3	2	2
CO 4	3	3	2	2	2	2					2	3	3	3	3
CO 5	2	2	1	1	1	1					1	2	3	2	2

CO	MG8591-PRINCIPLESOFMANAGEMENT
CO 1	Summarize the evolution of management thoughts and various challenges of managerial activities in a global
CO 2	Explain the types of Planning and Decision making at various levels management in the Organizations
CO 3	Discuss various types of Organization structure.
CO 4	List out the steps in Staffing process and stages in Career development.
CO 5	Generalize various Controlling techniques to maintain standards in Organizations.

PRINCIPAL

CO						P	0					PSO			
	1 2 3 4 5			6	7	8	9	10	11	12	1	2	3		
CO 1					1	1	1		1	1	1	1	1	-	
CO 2					2	2	2		2	2	2	2	2	-	
CO 3					2	2	2		2	2	2	2	2	-	
CO 4					2	2	2		2	2	2	2	2	-	
CO 5					3	3	3		3	3	3	3	3	_	

CO	EC8651-TRANSMISSIONLINESANDRF SYSTEMS
CO 1	Explain the characteristics of transmission lines and its losses
CO 2	Write about the standing wave ratio and input impedance in high frequency transmission lines
CO ₃	Analyze impedance matching by stubs using smith charts
CO 4	Analyze the characteristics of TE and TM waves
CO 5	Design a RF transceiver system for wireless communication

CO			,				P	C					PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	1					1	2	2	2	2	
CO 2	2	2	1	1	1	1					1	2	2	2	2	
CO 3	3	3	2	2	2	2					2	3	3	3	3	
CO 4	3	3	2	2	2	2					2	3	3	3	3	
CO 5	3	3	3	3	2	2					2	3	3	3	3	

CO	EC8004-WIRELESSNETWORKS
CO 1	Conversant with the latest 3G/4G networks and its architecture
CO 2	Design and implement wireless network environment for any application using latest wireless protocols and standards
CO 3	Ability to select the suitable network depending on the availability and requirement
CO 4	Implement different type of applications for smart phones and mobile devices with latest network strategies
CO 5	learn the applications of beyond 4G wireless networks

CO							P	O					PSO			
	1	2		1	2		1	2		1	2		1	2		
CO 1	2	2	1	1	1	1					1	2	2	2	1	
CO 2	3	3	2	2	2	2					2	3	3	3	2	
CO 3	2	2	1	1	1	1					1	2/	2	2	1	
CO 4	3	3	2	2	2	2			1	~~	12	W3	3	3	2	
CO 5	2	2	1	1	1	1		2	415 (X	KEN	LIN	A.E., Ph.I		2	1	

CO	EC8681-Microprocessor and Microcontroller laboratory	
CO 1	Write ALP Programmes for fixed and Floating Point and Arithmetic operations	
CO 2	Interface different I/Os with processor	
CO3	Generate waveforms using Microprocessors	
CO 4	Execute Programs in 8051	
CO 5	Explain the difference between simulator and Emulator	

СО	100						P	0				PSO			
	1	2		1	2		1	2	1	2		1	2		
CO 1	2	2	1	1	1	1				1	1	2		2	
CO 2	3	2	1	0	0	0				0	0	0	1	3	
CO 3	1	0	0	3	2	1				0	0	0	1	1	
CO 4	1	1	3	3	0	0				1	0	0	1	1	
CO 5	3	1	0	3	0	0				1	0	1	1	3	

CO	EC8661-VLSIDESIGNLABORATORY
CO 1	Write HDL code for basic as well as advanced digital integrated circuit
CO 2	Import the logic modules into FPGA Boards
CO ₃	Synthesize Place and Route the digital Ips
CO 4	Designt the layouts of Digital & Analog IC Blocks using EDA tools
CO 5	Simulate and Extract the layouts of Digital & Analog IC Blocks using EDA tools

CO							P	O						PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	2	1	0	0	0					0	0	0	1	2		
CO 2	3	2	1	0	0	0					0	0	0	1	2		
CO 3	1	0	0	3	2	1					0	0	0	1	2		
CO 4	1	1	3	3	0	0					1	0	0	1	2		
CO 5	3	1	0	3	0	0					1	0	1	1	2		

CO	EC8611-TECHNICAL SEMINAR
CO 1	Establish motivation for any topic of interest and develop a thought process for technical presentation
CO 2	Organize a detailed literature survey and build a document with respect to technical publications
CO 3	Analysis and comprehension of proof-of-concept and related data.
CO 4	Effective presentation and improve soft skills.
CO 5	Make use of new and recent technology (e.g. Latex) for creating technical reports

60							P	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1		2		2	2	2		2	2		2	2	2	2	2	
CO 2		2		2	2	2		2	2		2	2	2	2	2	
CO 3		2		2	2	2		2	2		2	2	2	2	2	
CO 4		2		2	2	2		2	2		2	2	2	2	2	
CO 5		2		2	2	2		2	2		2	2	2	2	2	

CO	HS8581-PROFESSIONAL COMMUNICATION
CO 1	Make effective presentations
CO 2	Participate confidently in Group Discussions.
CO 3	Attend job interviews and be successful in them
CO 4	Develop adequate Soft Skills required for the workplace
CO 5	Develop Team management skills

CO		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1						3				3		3	1	1	2
CO 2					*	3				3		3	1	1	2
CO 3						3				3		3	1	1	2
CO 4						3				3		3	1	1	2
CO 5						3				3		3	1	1	2

CO	EC8701-ANTENNAANDMICROWAVEENGINEERING
CO 1	Learn the basic principles of antenna
CO 2	Apply the basic principles of antenna and Evaluate antenna parameters and link power budgets
CO 3	Design and assess the performance of various antennas
CO 4	Learn the basics of microwave system
CO 5	Design a microwave system given the application specifications

CO							P	О					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	1					1	1	1	1		
CO 2	3	3	2	2	2	2					2	2	2	2	1	
CO 3	3	3	2	2	2	2					2	2	2	2	1	
CO 4	2	2	1	1	1	1					1	1	1	1		
CO 5	3	3	2	2	2	2					2	2	2	2	1	

PRINCIPAL

CO	EC8751-OPTICALCOMMUNICATIONANDNETWORKS
CO 1	Realize basic elements in optical fibers, different modes and configurations
CO 2	Analyze the transmission characteristics associated with dispersion and polarization techniques
CO 3	Design optical sources and detectors with their use in optical communication system
CO 4	Construct fibre optic receiver system, measurements and coupling techniques
CO 5	Design Optical Communication Systems and its networks

CO							P	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1		1	-	-	-	-	1	2	2	2	1	
CO 2	3	3	2	2		2	-	-	-	-	2	3	3	3	2	
CO 3	3	3	2	2		2	-	-	-	-	2	3	3	3	2	
CO 4	3	3	2	2		2	-	-	-	-	2	3	3	3	2	
CO 5	3	3	2	2		2	-	-	-	_	2	3	3	3	2	

CO	EC8791-EMBEDDEDANDREALTIMESYSTEM
CO 1	Describe the architecture and programming of ARM processor
CO 2	Outline the concepts of embedded systems
CO 3	Explain the basic concepts of real time operating system design
CO 4	Model real-time applications using embedded-system concepts
CO 5	Analyze the concepts of real time operating system design

CO				PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	1	1	1	1					1	2	2	2	2
CO 2	2	2	1	1	1	1					1	2	2	2	2
CO 3	2	2	1	1	1	1					1	2	2	2	2
CO 4	3	3	2	2	2	2					2	2	3	3	2
CO 5	3	3	2	2	2	2					2	2	3	3	2

CO	EC8702-Adhoc and Wireless Sensor Networks
CO 1	Know the basics of Ad hoc networks and Wireless Sensor Networks
CO 2	Apply this knowledge to identify the suitable routing algorithm based on the network and user requirement
CO 3	Apply the knowledge to identify appropriate physical and MAC layer protocolspan.
CO 4	Understand the transport layer and security issues possible in Adhoe and sensor networks.
CO 5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules

CO							P	O					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	1					1	1	2	2	1	
CO 2	3	3	2	2	2	2					2	2	3	3	2	
CO 3	3	3	2	2	2	2					2	2	3	3	2	
CO 4	2	2	1	1	1	1					1	1	2	2	1	
CO 5	2	2	1	1	1	1					1	1	2	2	1	

CO	GE8071-DISASTER MANAGEMENT
CO 1	Differentiate the types of disasters
CO 2	Differentiate the causes of disasters and their impact on environment and society
CO 3	Assess vulnerability and various methods of risk reduction measures as well as mitigation
CO 4	Draw the hazard and vulnerability profile of India
CO 5	Understand about disaster damage assessment and management

СО		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1						2	2	2	2	2	1	1			1
CO 2						2	2	2	2	2	1	1			1
CO 3						3	3	3	3	3	2	2			2
CO 4						2	2	2	2	2	1	1			1
CO 5						2	2	2	2	2	1	1			1

CO	OCS752- INTRODUCTION TO C PROGRAMMING
CO 1	Describe the advantages of a high level language like C/C++, the programming process, and the compilation process
CO 2	Describe and use software tools in the programming process
CO 3	Apply good programming principles to the design and implementation of C/C++ programs
CO 4	Design, implement, debug and test programs using the fundamental elements of C/C++
CO 5	Design, implement, debug and test programs using the fundamental elements of C/C++

СО				diam'r.			P	C					PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	0					1	1	1	1	1	
CO 2	2	2	1	1	1	0					1	1	1	1	1	
CO 3	3	3	2	2	2	1					2	2	2	2	2	
CO 4	3	3	2	2	2	1					2	200) 2	2	2	
CO 5	3	3	2	2	2	1			5	SPC	2	02	2	2	2	

PRINCIPAL

CO	EC8711-EMBEDDEDLABORATORY
CO 1	Write programs in ARM for a specific Application
CO 2	Interface memory, A/D and D/A convertors with ARM system
CO 3	Analyze the performance of interrupt
CO 4	Write program for interfacing keyboard, display, motor and sensor.
CO 5	Formulate a mini project using embedded system

СО							P	0					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	1	1	1	1					1	1	2	2	2	
CO 2	3	3	2	2	2	2					2	2	3	3	3	
CO 3	3	3	2	2	3	2					2	3	3	3	3	
CO 4	2	2	1	1	1	1					1	1	2	2	2	
CO 5	3	3	2	2	3	2					2	3	3	3	3	

CO	EC8761-ADVANCED COMMUNICATIONLABORATORY
CO 1	Analyze the performance of simple optical link by measurement of losses and Analyzing the
COI	mode characteristics of fiber
CO 2	Analyze the Eye Pattern, Pulse broadening of optical fiber and the impact on BER
CO 3	Estimate the Wireless Channel Characteristics
CO 4	Analyze the performance of Wireless Communication System
CO 5	Understand the intricacies in Microwave System design

CO			PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	3					3	3	3	3	3
CO 2	3	3	3	3	3	3					3	3	3	3	3
CO 3	3	2	2	2	2	2					2	2	2	2	2
CO 4	3	3	3	3	3	3					3	3	3	3	3
CO 5	3	2	2	2	2	2					2	2	2	2	2

CO	EC8094-SATELLITE COMMUNICATION
CO 1	Analyze the satellite orbits
CO 2	Analyze the earth segment and space segment
CO 3	Analyze the satellite Link design
CO 4	Analyze the satellite access and coding methods
CO 5	Design various satellite applications

CO							P	O					PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	3	3	2	2					2	2	3	3	2	
CO 2	3	3	3	3	2	2					2	2	3	3	2	
CO 3	3	3	3	3	2	2					2	2	3	3	2	
CO 4	3	3	3	3	2	2					2	2	3	3	2	
CO 5	2	2	2	2	2	2					2	2	2	2	1	

CO	GE8076-PROFESSIONALETHICSINENGINEERING
CO 1	Outline the core values that enrich the ethical behavior of an engineer.
CO 2	Explain the perception in ethics towards the profession, various moral issues, and theories on moral development
CO 3	Associate the code of ethics in real time application as responsible experimenters and understand the various
CO 4	Aware of responsibilities of an engineer for safety and risk benefit
CO 5	Have a clear idea about the global issues

СО							P	0					PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1						1	1	1	1	1	1	1			1
CO 2						2	2	2	2	2	2	2			2
CO 3						2	2	2	2	2	2	2			2
CO 4		12				2	2	2	2	2	2	2			2
CO 5						2	1	3	3	3	3	3			3

CO	EC8811-PROJECT WORK
CO 1	Analyze areal world problem, review literature and suggest its solution.
CO 2	Perform data analysis, interpret and provide valid conclusions
CO 3	Perform multi-disciplinary task as an individual and/or team member to manage the project/task.
CO 4	ComprehendtheEngineeringactivitieswitheffectivepresentationandreport.
CO 5	Interpretthefindingswithappropriatetechnological/researchcitation.

CO							P	0					PSO		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	3		3	3	3	3	3	3	3	3
CO 2	3	3	3	3	3	3		3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3		3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	3		3	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3		3	. 3	B	3	30	3	3	- 3

PERI INSTITUTE OF TECHNOLOGY

(Approved by AICTE, Affiliated to Anna University)

Affiliation number : F.no. Southern/1-4260192094/2019/EOA

Department of Electrical and Electronics Engineering

CO PO mapping Regulation 2017

	EE8351 DIGITAL LOGIC CIRCUITS
CO 1	Ability to study various number systems and simplify the logical expressions using Boolean functions.
CO 2	Ability to design combinational and sequential Circuits.
CO3	Ability to design various synchronous and asynchronous circuits.
CO 4	Ability to introduce asynchronous sequential circuits and PLDs.
CO 5	Ability to simulate using software package.

2		PO													
	3	4	5	6	7	8	9	10	11	12	1	2	3		
3	1	1	-	-	-	-	-	2	-	3	3	1	3		
3	3	2	-	-	-	-	-	2	-	3	3	1	3		
3	3	2	-	-	-	-	-	2	-	3	3	1	3		
3	3	1	-	-	-	-	_	2	-	3	3	1	3		
2	1	1	3	-	-	-	-	2	-	3	3	1	3		
	3 3 3	3 3 3 3 3 3	3 3 2 3 3 2 3 3 1	3 3 2 - 3 3 2 - 3 3 1 - 2 1 1 3	3 3 2 - - 3 3 2 - - 3 3 1 - - 2 1 1 3 -	3 3 2 - - 3 3 2 - - 3 3 1 - - 2 1 1 3 - -	3 3 2 - - - 3 3 2 - - - 3 3 1 - - - 2 1 1 3 - -	3 3 2 - - - - 3 3 2 - - - - 3 3 1 - - - - 2 1 1 3 - - - -	3 3 2 - - - - 2 3 3 2 - - - - 2 3 3 1 - - - - 2 2 1 1 3 - - - 2	3 3 2 - - - - 2 - 3 3 2 - - - - 2 - 3 3 1 - - - - 2 - 2 1 1 3 - - - - 2 -	3 3 2 - - - - 2 - 3 3 3 2 - - - - 2 - 3 3 3 1 - - - - 2 - 3 2 1 1 3 - - - - 2 - 3	3 3 2 - - - - 2 - 3 3 3 3 2 - - - - 2 - 3 3 3 3 1 - - - - 2 - 3 3 3 3 1 - - - - 2 - 3 3 2 1 1 3 - - - 2 - 3 3	3 3 2 - - - - 2 - 3 3 1 3 3 2 - - - - - 2 - 3 3 1 3 3 1 - - - - 2 - 3 3 1 2 1 1 3 - - - - 2 - 3 3 1		

	EE8391 ELECTROMAGNETIC THEORY
CO 1	Ability to understand the basic mathematical concepts related to electromagnetic vector fields.
CO 2	Ability to understand the basic concepts about electrostatic fields, electrical potential, energy density and their applications.
CO 3	Ability to acquire the knowledge in magneto static fields, magnetic flux density, vector potential and its applications.
CO 4	Ability to understand the different methods of emf generation and Maxwell's equations.
CO 5	Ability to understand the basic concepts electromagnetic waves and characterizing parameters.

СО						Po	0						POS		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	3	-	-	-	-	-	-	-	2	3	3	2
2	3	3	3	3	-	1	-	-	-	_	-	2	3)3	3
3	3	3	3	3	-	1	-	_	_	_	2 5	21	J.	6	3
4	3	3	3	3	_	1	_	- /	-	Dr	72	m Sen	E. Ph.	" 3	3
5	3	3	3	3	-	1	-	-	0	RSON	KENN	2	3	3	3

	EE8301 ELECTRICAL MACHINES I
CO 1	Ability to analyze the magnetic-circuits.
CO ₂	Ability to acquire the knowledge in constructional details of transformers.
	Ability to understand the concepts of electromechanical energy conversion.
CO 4	Ability to acquire the knowledge in working principles of DC Generator and DC motor.
CO 5	Ability to acquire the knowledge in various losses taking place in D.C. Machines

2	PO 1 2 3 4 5 6 7 9 0 10 11 10														
	3	4	5	6	7	8	9	10	11	12	1	2	3		
2	3	2		-	1-	-	-	-	2	2	3	-	2		
2	3	2	-	-	-	-	-	-	1	-	3	-	1		
2	3	2	-	-	-	-	-	-	-	2	3	1	2		
2	3	2	-	-	-	-	-	-	1	-	3	2	2		
2	3	2	-	-	-	-	-	-	2	-	3	2	2		
	2 2	2 3 2 3	2 3 2 2 3 2 2 3 2 2 3 2	2 3 2 - 2 3 2 - 2 3 2 - 2 3 2 - 2 3 2 -	2 3 2 2 3 2 2 3 2 2 3 2	2 3 2 - - - 2 3 2 - - - 2 3 2 - - - 2 3 2 - - - 2 3 2 - - -	2 3 2 - - - - 2 3 2 - - - 2 3 2 - - - 2 3 2 - - - 2 3 2 - - -	2 3 2 - - - - - 2 3 2 - - - - 2 3 2 - - - - 2 3 2 - - - - 2 3 2 - - - -	2 3 2 - - - - - - 2 3 2 - - - - - 2 3 2 - - - - - 2 3 2 - - - - - 2 3 2 - - - - -	2 3 2 - - - - - 2 2 3 2 - - - - - 1 2 3 2 - - - - - - - 2 3 2 - - - - - - 1	2 3 2 - - - - - 2 2 2 3 2 - - - - - 1 - 2 3 2 - - - - - 1 - 2 3 2 - - - - - 1 - 2 3 2 - - - - - 2 -	2 3 2 - - - - - 2 2 3 2 3 2 - - - - - 1 - 3 2 3 2 - - - - - 1 - 3 2 3 2 - - - - - 1 - 3 2 3 2 - - - - - 2 - 3	2 3 2 - - - - - 2 2 3 - 2 3 2 - - - - - 1 - 3 - 2 3 2 - - - - - 2 3 1 2 3 2 - - - - - 1 - 3 2 2 3 2 - - - - - 2 - 3 2		

	EC8351 – ELECTRON DEVICES & CIRCUITS
CO 1	Able to explain the structure and working operation of basic electronic devices
CO ₂	Able to identify and differentiate both active and passive elements.
CO3	Analyze the characteristics of different electronic devices such as diodes and
	transistors.
CO 4	Able to choose and adapt the required components to construct an amplifier circuit.
CO 5	Able to employ the acquired knowledge in design and analysis of oscillators

CO						P	O						POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	3	2	-	3	3	-	-	-	-	3	2	2	1	
2	3	2	3	3	-	2	2	-	-	-	-	3	2	2	2	
3	3	3	3	3	2	2	2	-	-	-	-	3	2	2	1	
4	3	3	3	3	3	2	2	-	-	-	-	3	2	2	1	
5	3	3	3	3	3	3	2	-	-	-	-	3	2	2	1	
					Lov	v (1); N	Mediun	n (2); F	High (3)		5			1	

	ME8792 POWER PLANT ENGINEERING
CO 1	Able to explain the layout, construction and working of the components inside a thermal power plant.
CO 2	Able to explain the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants.
CO 3	Able to Explain the layout, construction and working of the components inside nuclear power plants.
CO 4	Able to explain the layout, construction and working of the components inside Renewable energy power plants.
CO 5	Able to explain the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.

PERI INSTITUTE OF TECHNOLOGY

Mannivakkam, Chennai - 600 6 3.

co -						P	O						POS			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	-	3	-	2	-	-	-	-	-	3	3	3	2	
2	3	3	2	3	-	2	-	-	-	-	-	3	3	3	1	
3	3	3	2	3	-	_	-	-	-	_	-	3	3	3	2	
4	3	3	1	3	-	-	-	-	-	-	-	3	3	3	1	
5	3	3	1	3	3	_	-	-	-	_	_	3	3	3	1	

	EE 8311 ELECTRICAL MACHINES LABORATORY - I	
CO 1	Ability to understand and analyze DC generator.	
	Ability to understand and analyze DC motor.	-
	Ability to understand and analyse transformers.	

co -			-			P	O	Altonomic Character					POS			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3			3	3						3	3	3	3	3	
2	3			3	3						3	3	3	3	3	
3	3			3	3						3	3	3	3	3	

	EC 8311 ELECTRONICS LABORATORY
CO 1	Ability to understand and analyse electronic circuits.

CO		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3			3	3						3	3	2	2	1
					Lov	v (1); N	Mediun	n (2); I	High (3)					

	EE8401 ELECTRICAL MACHINES - II
CO ₁	Ability to understand the construction and working principle of synchronous generator.
CO ₂	Ability to understand MMF curves and armature windings.
	Ability to acquire knowledge on Synchronous motor.
CO 4	Ability to understand the construction and working principle of three phase induction motor.
CO 5	Ability to predetermine the performance characteristics of synchronous machines.

CO						P	O						POS		
	_ 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	1									3	2	
2	2	1	1	1									3	2	
3	2	1	1	1							_		3 ()	2	

Dr. R. PALSON KENNEDY, M.E., Ph.D.,

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY

Mannivakkam, Chennar- 500 048.

4	2	1	1	1	3	2
5	2	1	1	1	3	2

	EE8402 TRANSMISSION AND DISTRIBUTION
CO 1	To understand the importance and the functioning of transmission line parameters.
CO ₂	To acquire knowledge on the performance of Transmission lines.
CO ₃	To understand the importance of distribution of the electric power in power system.
CO 4	To acquire knowledge on underground cables.
CO 5	To become familiar with the function of different components used in Transmission and
CU 3	Distribution levels of power system and modeling of these components.

CO						P	0							POS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1											3		
2	3	2	1										3		
3	2	2	1										3		
4	2	1	1										3		
5	2	1	1										3		

	EE8403 MEASUREMENT &INSTRUMENTATION
CO 1	To acquire knowledge on Basic functional elements of instrumentation.
CO ₂	To understand the concepts of Fundamentals of electrical and electronic instruments.
CO3	Ability to compare between various measurements techniques.
CO 4	To acquire knowledge on Various storage and display devices.
CO 5	To understand the concepts Various transducers and the data acquisition systems.

СО						P	0							POS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1								2			3		
2	2	1								2			3		
3	2	1	1							2			3		
4	2									2			3		
5	2	1								2			3		

PERI MENTE OF TECHNOLOGY
Man Menter Kenner 600 048

	EE8451 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS
CO 1	Ability to acquire knowledge in IC fabrication procedure.
CO ₂	Ability to analyze the characteristics of Op-Amp.
CO ₃	To understand and acquire knowledge on the Applications of Op-amp
CO 4	To understand the functional blocks and the applications of special ICs like Timers, PLL circuits, regulator Circuits.
CO 5	To understand the importance of signal analysis using Op-amp based circuits.

CO						P	O							POS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2
1	2	1								10	11	12	2		2
2	2	1											2		2
3	2	1	1										2		2
4	2	1	1										2		2
5	2	1	1										2		2
			1		Lov	v (1): N	/ledium	(2)· F	ligh (3)			2		2

	IC8451 CONTROL SYSTEMS
CO 1	Ability to develop various representations of system based on the knowledge of Mathematics, Science and Engineering fundamentals.
CO 2	Ability to do time domain and frequency domain analysis of various models of linear system.
CO 3	Ability to interpret characteristics of the system to develop mathematical model.
CO 4	Ability to design appropriate compensator for the given specifications.
CO 5	Ability to come out with solution for complex control problem.

co -						P	O							POS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2				3	2			1	1	2	2	1	1
2	2	2	1			2	2	1		1	1	2	2	1	1
3	3	2	1			3	2	1		1	1	2	2	2	1
4	3	2	1			3	2	1		1	1	2	2	2	1
5	2	1	1	1		2	1	1	1	1	1	2	2	2	1

	EE8411 ELECTRICAL MACHINES LABORATORY - II
CO 1	Ability to understand and analyze EMF and MMF methods.
CO ₂	Ability to analyze the characteristics of V and Inverted V curves.
CO3	Ability to understand the importance of Synchronous machines.
CO 4	Ability to understand the importance of Induction Machines.
CO 5	Ability to acquire knowledge on separation of losses.

Dr. R. PALSON KENNEDY, M.E., Ph.D.

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY Mannivakkam, Chennai - 600 048.

СО						P	0							POS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1										2	1	3
2	3	2	1									-	2	1	3
3	3	2	1										2	1	3
4	3	2	1										2	1	3
5	3	2	1										2	1	3
					Low	V(1); N	1edium	(2); H	ligh (3)	1				

	EE8461 LINEAR AND DIGITAL INTEGRATED CIRCUITS LABORATORY
CO 1	Ability to understand and implement Boolean Functions.
CO ₂	Ability to understand the importance of code conversion.
	Ability to Design and implement 4-bit shift registers.
CO 4	Ability to acquire knowledge on Application of Op-Amp.
CO 5	Ability to Design and implement counters using specific counter IC.

CO						P	O						POS			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1	1	1		1								1			
2	2	2	2		2								1			
3	1	1	1		2								1			
4	2	2	2		1								1			
5	2	1	2		2								1			
					Lov	v (1); N	/lediun	n (2); F	High (3)			1			

	20000				EE84	12 TE	CHNI	CAL S	SEMI	NAR					
CO 1	A	bility t	o revie	ew, pre	pare ar	nd pres	ent tec	hnolo	gical de	evelopi	nents.				
CO ₂		bility t											i i	100	
CO				POS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1									3	3	3		1	1	1
2									3	3	3		1	1	
					Lov	v (1); N	/lediun	n (2);	High (:	3)				1	

	EE8501 Power System Analysis
CO 1	Ability to model the power system under steady state operating condition.
CO ₂	Ability to understand and apply iterative techniques for power flow analysis.
CO3	Ability to model and carry out short circuit studies on power system.
CO 4	Ability to acquire knowledge on Fault analysis.
CO 5	Ability to model and analyze stability problems in power system.

Dr. R. PALSON KENNEDY, M.E., Ph.D.,

PRINCIPAL

FERI INSTITUTE OF TECHNOLOGY Mannivakkam, Chennai - 600 048.

co		,	-			P	0						POS			
	_1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	3	3	3		3					3	3	2	1	
2	3	2	2	2	2		2					3	3	3	2	
3	3	2	2	2	2		2					3	3	3	2	
4	3	2	2	2	2		2					3	3	3	2	
5	3	3	3	2	3		2					3	3	3	3	

	EE8551-MICROPROCESSORS AND MICROCONTROLLERS
CO 1	Ability to acquire knowledge in Addressing modes & instruction set of 8085 & 8051.
CO 2	Ability to write the assembly language programme.
CO3	Ability to need & use of Interrupt structure 8085 & 8051.
CO 4	Ability to understand the importance of Interfacing.
CO 5	Ability to develop the Microprocessor and Microcontroller based applications.

CO						P	O						POS				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	2	1								2			2	1	2		
2	2	2								2			2	1	2		
3	2	1								2			2	1	2		
4	2	1								2			2	1	2		
5	3	2	2							2			2	1	3		

	EE8552 POWER ELECTRONICS
CO 1	Ability to analyse AC-AC converters.
CO 2	Ability to analyse DC-DC converters.
CO3	Ability to analyse DC-AC converters.
CO 4	Explain the different modulation techniques of pulse with modulated inverters and to understand harmonic reduction methods.
CO 5	Ability to choose the converters for real time applications

CO						P	O						POS			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	1	1			2						3		2	
2	2	2	2	2			2						3		2	
3	2	2	2	2			2						3		2	
4	2	2	2	2			2						3		2	
5	2	1	1	1			2						3		2	

Dr. R. PALSON KENNEDY, M.E., Ph.D.,

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY Mannivakkam, Chennai - 600 048.

	EE8591 Digital Signal Processing
CO 1	Ability to acquire knowledge on Signals and systems & their mathematical representation.
CO ₂	Ability to understand and analyze the discrete time systems.
CO ₃	Ability to understand the importance of Fourier transform, digital filters and DS Processors
CO 4	Ability to understand the types of filters and their design for digital implementation.
CO 5	Ability to acquire knowledge on programmability digital signal processor & quantization effects.

CO						P	O						POS			
	1	2	3	4	5	6	7	8	Q	10	11	12	1	103		
1	3		1		3			-		10	11	12	1	2	3	
2	3		1		2								2		2	
-	3		1		3								2	1	2	
3	3		1		3								2	1	2	
4	3		1		2										3	
E	2		1		3								2	1	3	
3	2		1		3								2		2	
					Lov	v (1); N	1edium	(2); H	ligh (3)						

-	CS8392 BASICS OF BIO-MEDICAL INSTRUMENTATION
CO 1	Ability to analyze the fundamentals of biomedical engineering.
CO ₂	Ability to interpret the communication mechanics in biomedical systems
CO3	Ability to measure and analyze non-electrical parameters and its diagnostic procedures.
CO 4	Ability to measure and analyze electrical parameters and also electrical safety.
CO 5	Ability to analyze and apply the life assisting, therapeutic and imaging techniques.
	reality to analyze and apply the me assisting, therapeutic and imaging techniques.

CO						P	0							POS	3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	1	-	-	2	2	_	1	-		2	3	1	1
2	3	1	3	_	-	2	2	-	1		-			1	1
3	1	1	-	_	_	1	-		1	-	-	2	3	1	3
4	3	2	2	-	2	3	2	-	1	-	-	2	1	1	-
5	3	2	3	1	2	2	2	-	1	-	-	2	3	2	2
					Lo	w (1); I		n (2); I	1 High (3	-	-	2	3	2	3

	EE8511 CONTROL AND INSTRUMENTATION LABORATORY
CO 1	Ability to understand control theory and apply them to electrical engineering problems.
CO ₂	Ability to analyze the various types of converters.
CO ₃	Ability to design compensators.
CO 4	Ability to understand the basic concepts of bridge networks.
CO 5	Ability to the basics of signal conditioning circuits.

Dr. R. PALSON KENNEDY, M.E., Ph.D. PRINCIPAL PERI INSTITUTE OF TECHNOLOGY Mannivakkam, Chennai - 600 048.

PO														POS		
1	2	3	4	5	6	7	8	9	10	11	12	1	2.	3		
2	1	1										3				
2	1	1										3				
2	1	1		-								3				
2	1	1										3				
	1	1										3				
- []		2 1 1 1 1 1	2 3 1 1 1 1 1 1 1 1 1 1	2 3 4 1 1 1 1 1 1 1 1 1 1	2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7 8 9 1 <td>2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>2 3 4 5 6 7 8 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>2 3 4 5 6 7 8 9 10 11 12 1</td> <td>2 3 4 5 6 7 8 9 10 11 12 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3</td> <td></td>	2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7 8 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7 8 9 10 11 12 1	2 3 4 5 6 7 8 9 10 11 12 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3			

	HS8581 PROFESSIONAL COMMUNICATION	
CO 1	Ability to make effective presentations	
CO ₂	Ability to Participate confidently in Group Discussions.	
	Attend job interviews and be successful in them	
	Develop adequate Soft Skills required for the workplace	

		POS											
2	3	4	5	6	7	8	9	10	11	12	1	2	3
							2	2	2		2	_	
							2	2	2		2		
							2	2	2		2		
							2	2	2				
	2	2 3	2 3 4	2 3 4 5	2 3 4 5 6	2 3 4 5 6 7	2 3 4 5 6 7 8	2 3 4 5 6 7 8 9 2 2 2 2 2 2	2 3 4 5 6 7 8 9 10 2 2 2 2 2 2 2 Low (1); Medium (2); High (3)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 4 5 6 7 8 9 10 11 12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

	CS8383 OBJECT ORIENTED PROGRAMMING LABORATORY
CO 1	Develop and implement Java programs for simple applications that make use of classes, packages and interfaces.
CO 2	Develop and implement Java programs with array list, exception handling and multithreading.
CO3	Design applications using file processing, generic programming and event handling

CO		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1											2		
2	2	1											2		
3	2	1											2		
4								3							
5									3		3				
					Lo	w (1);	Mediu	m (2);	High (3)	3				

Dr. R. PALSON KENNEDY, M.E., Ph.D.,
PRINCIPAL
PERI INSTITUTE OF TECHNOLOGY
Mannivakkam, Chennai - 600 0/8.

	EE8601 SOLID STATE DRIVES
CO 1	Ability to study about the steady state operation and transient dynamics of a motor load system.
CO 2	Ability to analyze the operation of the converter/chopper fed dc drive.
CO ₃	Ability to analyze the operation and performance of AC motor drives.
CO 4	Ability to select suitability drive for the given application.
CO 5	Ability to analyze and design the current and speed controllers for a closed loop solid state DC motor drive.

CO						P	O						POS		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2
1	3	3	2	3	2		2			10	- 11	12	3		2
2	3	3	2	3	2		2						2		2
3	3	3	2	3	2		2						2		2
4	3	3	2	3	2		2						2		2
5	3	3	2	3	2		2						3		2
					I or	. (1). 3	Medium	(O) T	T' 1 (0				3		2

EE8602-PROTECTION AND SWITCHGEAR
Ability to find the causes of abnormal operating conditions of the apparatus and system
Ability to analyze the characteristics and functions of relays and protection schemes.
Ability to study about the apparatus protection, static and numerical relays.
Ability to understand and analyze Electromagnetic and static relays.
Ability to acquire knowledge on functioning of circuit breaker.

co	PO												POS				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2		
1	2	1	1	3	1		3			2	11	12	3		2		
2	2	1	1	3	1		3			2			2		2		
3	2	1	1	3	1		3			2			2		2		
4	2	1	1	3	1		3			2			2		2		
5	2	2	1	3	1		3			2			2		2		

	EE8691 EMBEDDED SYSTEMS	
CO 1	Ability to understand and analyze Embedded systems.	
CO ₂	Ability to study about the bus Communication in processors.	
CO 3	Ability to operate various Embedded development strategies.	
CO 4	Ability to acquire knowledge on various processor scheduling algorithms.	
CO 5	Ability to understand basics of Real time operating system.	

DI. R. PALSON KENNEDY, M.E., Ph.D.,

PRINCIPAL
PERI INSTITUTE OF TECHNOLOGY
Mannivakkam, Chennai - 600 048.

			POS											
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
2									2			2	1	
2	1		1						2			2	1	
2	1		1						2			2	1	
2	1								2			2	1	
2	1	1		1					2			2	1	
	1 2 2 2 2 2 2	1 2 2 1 2 1 2 1 2 1 2 1	1 2 3 2 1 2 1 2 1 2 1 2 1 1 1	1 2 3 4 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1	1 2 3 4 5 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1	1 2 3 4 5 6	PO 1 2 3 4 5 6 7 2 1 1 1	1 2 3 4 5 6 7 9	1 2 3 4 5 6 7 9 0	1 2 3 4 5 6 7 9 0 10	1 0 0			1 2 2 4 5 6 5 0

	EE8002 DESIGN OF ELECTRICAL APPARATUS
CO 1	Ability to understand basics of design considerations for rotating and static electrical machines.
CO 2	Ability to design of field system for its application.
CO3	Ability to design single and three phase transformer.
CO 4	Ability to design stator and rotor of induction motor.
CO 5	Ability to design and analyze synchronous machines.

2 2	3 3	5	6	7 3	8	9	10	11	12	1	2	3
2 2	3	1		3			2		2	2		-
2	3	1		-			_	0	1 2	1 3 1		1
		1 1		3			2		2	3	1	
2	3	1		3			2		2	3		
2	3	1		3			2		2	3	1	
2	3	1		3			2		2	3		
		2 3	2 3 1	2 3 1	2 3 1 3	2 3 1 3	2 3 1 3	2 3 1 3 2	2 3 1 3 2 2 3 1 3 2	2 3 1 3 2 2 2 3 1 3 2 2	2 3 1 3 2 2 3 2 3 1 3 2 2 3	2 3 1 3 2 2 3 1 2 3 1 3 2 2 3 1

	EE8006 POWER QUALITY
CO 1	Ability to understand various sources, causes and effects of power quality issues,
	electrical systems and their measures and mitigation.
CO 2	Ability to understand the concepts about Voltage and current distortions, harmonics
CO ₃	Ability to analyze the causes & Mitigation techniques of various PQ events.
CO 4	Ability to acquire knowledge on compensation techniques.
CO 5	Ability to acquire knowledge on DVR.

CO						P	O						POS			
-	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	1	1	2			2						3			
2	2	1	1	2			2						3			
3	2	1	1	2			2						3			
4	3	2	2	2			2						3			
5	2	1	1	2			2				(3			

PERI INSTITUTE OF TECHNOLOGY

PERI I

	EE8661 POWER ELECTRONICS AND DRIVES LABORATORY
CO 1	Ability to practice and understand converter and inverter circuits and apply software for engineering problems.
CO 2	Ability to experiment about switching characteristics various switches.
CO 3	Ability to analyze about AC to DC converter circuits.
CO 4	Ability to analyze about DC to AC circuits.
CO 5	Ability to acquire knowledge on simulation software.

CO		,				P	0						POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1		3	3						1	1	1	3			
2	1		3	3						1	1	1	3			
3	1		2	3						1	1	1	3			
4	1		3	3						1	1	1	3			
5	1		3	3						1	1	1	3			

	EE8681 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY
CO 1	Ability to understand and apply computing platform and software for engineering problems.
CO 2	Ability to programming logics for code conversion.
CO3	Ability to acquire knowledge on A/D and D/A.
CO 4	Ability to understand basics of serial communication.
CO 5	Ability to understand and impart knowledge in DC and AC motor interfacing.

СО						P	0						POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1		3	3						1	1	1	3			
2	1		3	3					79	1	1	1	3			
3	1		2	3					~	1	1	1	3			
4	1		3	3						1	1	1	3			
5	1		3	3						1	1	1	3			

	EE8611 MINI PROJECT
CO 1	Evaluate the final year project work and find solution by formulating proper methodology.

CO						P	O						POS			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1		3	3						1	1	1	3			

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY Mannivakkam, Chennai - 600 048.

	EE8701 HIGH VOLTAGE ENGINEERING	
CO 1	Ability to understand various types of over voltages in power system.	
CO 2	Ability to understand Generation and measurement of high voltage.	
CO 3	Ability to understand Transients in power system.	
CO 4	Ability to measure over voltages.	
CO 5	Ability to test power apparatus and insulation coordination.	

00						P	0						POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	2	2	2	2		1					1	2	11-	1	
2	2	2	2	2	2		1					1	2	2	-	
3	2	2	2	2	2		1					1	2	-	-	
4	2	2	2	2	2		1					1	2	-	1	
5	2	2	2	2	2		1					1	2	-	1	
5	2	2	2	2	Lo	w (1);	Mediun	n (2); I	ligh (3	3)		1	2	-		

	GE8071 DISASTER MANAGEMENT
CO 1	Ability to differentiate the types of disasters, causes and their impact on environment and society
CO 2	Ability to assess vulnerability and various methods of risk reduction measures as well as mitigation.
CO 3	Ability to Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

СО		PO													
	1	3	-	1	-	1	1	1	2	1	-	2	1	3	-
1	1	3	1	1	-	1	1	2	2	1	-	2	1	3	1
2	1	2	1	2	-	1	1	2	1	-	-	2	1	2	1
3	1	2	-	1	-	1	1	1	1	2	-	2	1	2	-

	GE8077 TOTAL QUALITY MANAGEMENT
CO 1	Ability to know the importance of significance of quality and its frame work.
CO 2	Ability to apply various TQM principles and its importance.
CO 3	Ability to apply TQM traditional and new management tools and techniques.
CO 4	Ability to apply TQM Quality circles and quality function deployment.
CO 5	Ability to Identify requirements of quality improvement programs.

-						PO	О						POS				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	1	3	1	1	-	1	1	2	2	1	-	2	1	3	1		
2	1	2	1	2	-	1	1	2	1	-	-	2	1	2	1		
3	1	2	-	1	_	1	1	1	1	2	-	2	1	2	-		
4	1	3	1	1	-	1	1	2	. 2	1	-	2	1 ,	3	1		
5	1	2	1	2	-	1	1	2	A	A P	~	2	X	2	1		

	EE8703 RENEWABLE ENERGY SYSTEMS
CO 1	Understand the various types of renewable energy sources and technologies.
CO 2	Understand the adequate inputs on a variety of issues in harnessing renewable
COZ	Energy.
CO 3	Understand the requirements of solar energy and other thermal systems,
CO 4	Understand the basics of biomass energy.
CO 5	Interpret the current and possible future role of renewable energy sources.

		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1	3	1	1	-	1	1	2	2	1	-	2	1	3	1	
2	1	2	1	2	-	1	1	2	1	7-	-	2	1	2	1	
3	1	2	-	1	-	1	1	1	1	2	-	2	1	2	-	
4	1	3	1	1	-	1	1	2	2	1	-	2	1	3	1	
5	1	2	1	2	-	1	1	2	1	-	-	2	1	2	1	

	EE8702 POWER SYSTEM OPERATION AND CONTROL
CO 1	Ability to understand the day-to-day operation of electric power system.
	Ability to analyze the control actions to be implemented on the system to meet the
CO ₂	minute-to-minute variation of system demand.
CO 3	Ability to understand the significance of power system operation and control.
CO 4	Ability to acquire knowledge on real power-frequency interaction.
CO 5	Ability to understand the reactive power-voltage interaction.

						PO)						POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1	3	1	1	-	1	1	2	2	1	-	2	1	3	1	
2	1	2	1	2	-	1	1	2	1	-	-	2	1	2	1	
3	1	2	_	1	-	1	1	1	1	2	-	2	1	2	-	
4	1	3	1	1	-	1	1	2	2	1	-	2	1	3	1	
5	1	2	1	2	-	1	1	2	1	-	-	2	1	2	1	

	EE8711 POWER SIMULATION LABORATORY
CO 1	Ability to understand power system planning and operational studies.
CO 2	Ability to acquire knowledge on Formation of Bus Admittance and Impedance Matrices and
CO 2	Solution of Networks.
CO 3	Ability to analyze the power flow using GS and NR method
CO 4	Ability to understand the economic dispatch.
CO 5	Analyze the electromagnetic transients.

		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2		1	3						1	1	1	3	08	1
2	2		1	3					>	1	Pl	20	3	2	1
3	2		1	3						10	VI	MINED	MI	, Ph.D.	1
4	2		1	3					Dr. F	. PALS	ON	PIDAL	3	2	1
5	2		1	3						1	PIRIT	(Illure	43	663	1

PERI INSTITUTE OF TECHNOLOGY

Mannivakkam, Chennai - 600 u44.

Low (1); Medium (2); High (3)

	EE8712 RENEWABLE ENERGY SYSTEMSLABORATORY
CO 1	Ability to understand and analyze renewable energy systems.
CO 2	Ability to provide adequate inputs on a variety of issues in harnessing renewable energy.
CO 3	Ability to train the students in renewable energy sources and technologies.
CO 4	Ability to recognize current and possible future role of Renewable energy sources.
CO 5	Ability to understand basics of intelligent controllers.

		PO													
CO	1	2.	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	_	1	3						1	1	1	3	2	1
2	2		1	3						1	1	1	3	2	1
3	2		1	3						1	1	1	3	2	1
1	2.		1	3						1	1	1	3	2	1
5	2		1	3		w (1); I				1	1	1	3	2	1

	EE8015 ELECTRIC ENERGY GENERATION UTILISATION AND CONSERVATION
CO 1	To understand the main aspects of generation, utilization and conservation.
CO 2	To identify an appropriate method of heating for any particular industrial application.
CO 3	To evaluate domestic wiring connection and debug any faults occurred.
CO 4	To construct an electric connection for any domestic appliance like refrigerator as well as to design a battery charging circuit for a specific household application.
CO 5	To realize the appropriate type of electric supply system as well as to evaluate the 125 performance of a traction unit.

				POS											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	3	3	1	-	2	-	-	-	-	1	2	1	3
2	2	1	3	3	1	-	2	-	-	-	-	1	2	1	3
3	1	-	3	-	1	-	2	-	-	-	-	1	1	-	3
4	3	-	-	-	2	-	2	-	-	-	-	-	3	-	-
5	3	-	-	-	2	-	2	-	-	-	-	-	3	-	-

	EE 8811 SMART GRID
CO 1	Ability to understand on the concepts of Smart Grid and its present developments
CO 2	Ability to understand different Smart Grid technologies.
CO 3	Ability to interpret the different smart meters and advanced metering infrastructure.
CO 4	Ability to infer power quality management in Smart Grids.
CO 5	Ability to understand on LAN, WAN and Cloud Computing for Smart Grid applications.

PERI INSTITUTE OF TECHNOLOGY
Mannivakkam, Chennai - 600 048.

	PO														POS			
CO	1	2.	3	4	5	6	7	8	9	10	11	12	1	2	3			
1	2	1	3	3	1	_	2	-	-	-	-	1	2	1	3			
1	2	1	2	2	1	_	2	-	_	-	-	1	2	1	3			
2	2	1	3	3	1		2			<u> </u>	_	1	1	_	3			
3	1	-	3		1	-		-		-		1	2					
4	3	-	-	-	2	-	2	-	-	-	-	-	3		-			
5	3	-	-	-	2	-	2 Mediu	-	-	-	-	-	3	_				

EE 8811 Project work	
Infer any challenging practical problems and find solution by formulating proper methodology.	

Т			POS												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2.	1	3	3	1	- w (1);	2	-	-	-	-	1	2	1	3

CO 1

Or. R. PALSON KENNEDY, M.E., Ph.D.,

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY Mannivakkam, Chennai - 600 048.

PERI INSTITUTE OF TECHNOLOGY

(Approved by AICTE, Affiliated to Anna University)

Affiliation number: F.no. Southern/1-4260192094/2019/EOA

Department of Mechanical Engineering CO PO mapping Regulation 2017

	MA8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
CO 1	Understand how to solve the given standard partial differential equations.
CO 2	Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
CO 3	Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations
CO 4	Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
CO 5	Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

co		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	2	2	1	-	3	3	-	-	-	-	-	-
2	2	3	2	1	1	-	-	3	3	-	-	-	-	-	-
3	3	2	3	-	1	2	1	3	2	_	-	-	-	-	_
4	3	3	3	1	1	-	-	3	3	_	-	-	_	_	-
5	3	3	3	1	-	1	-	3	3	-	-	-	_	-	_

	ME8391ENGINEERING THERMODYNAMICS
CO 1	Apply the first law of thermodynamics for simple open and closed systems under steady and unsteady conditions.
CO 2	Apply second law of thermodynamics to open and closed systems and calculate entropy and availability.
CO3	Apply Rankine cycle to steam power plant and compare few cycle improvement methods.
CO 4	Derive simple thermodynamic relations of ideal and real gases.
CO 5	Calculate the properties of gas mixtures and moist air and its use in psychometric processes

CO						P	0						PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	3	3	1	2	1	3	3	1	-	-	-	-	-	-		
2	3	3	3	1	2	1	3	3	1	-	-	-	-	_	-		
3	3	3	3	1	2	1	3	3	1	_	-	-	- /		_		
4	3	3	3	1	2	1	3	3	1	-	-	- 0	/-	_	_		
5	3	3	3	1	2	1	3	3	1	_	- \	- \- X	1-	-	_		

PERI INSTITUTE OF TECHNOLOGY Matriwakkam, Grainies 100 98.

	CE8394 FLUID MECHANICS AND MACHINERY
CO 1	Apply mathematical knowledge to predict the properties and characteristics of a fluid.
	Can analyse and calculate major and minor losses associated with pipe flow in piping networks.
	Can mathematically predict the nature of physical quantities.
CO 4	Can critically analyse the performance of pumps.
CO 5	Can critically analyse the performance of turbines

00						P	O						PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	3	-	1	-	-	-	-	-	-	-	1 - 1	-	1-	
2	3	3	3	1	1	1	-	-	-1	-	-			-	-	
3	3	2	3	2	2	-	-	-	-	-	-	-	-	-	-	
4	3	3	3	-	2	-	-	-	(-)	-	-	-	-	-	-	
5	3	3	3	-	2		-	-	-		-		-	-	-	

	ME8351 MANUFACTURING TECHNOLOGY – I
CO 1	Explain different metal casting processes, associated defects, merits and demerits.
CO 2	Compare different metal joining processes.
CO 3	Summarize various hot working and cold working methods of metals.
CO 4	Explain various sheet metal making processes.
CO 5	Distinguish various methods of manufacturing plastic components

60		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	3	3	3	3	-	3	3	-	-	-	-	-	-
2	-	-	3	3	3	3	1	2	3	-	-	-	-	-	-
3	-	1	3	2	3	2	-	3	3	-	-	-	-	-	-
4	1	-	3	3	3	3	1	2	2	-	-	-	-	-	-
5	-	-	3	3	3	3	-	3	3	-	-	-	-	-	-
5	-	-	3	3	3	w (1); 1	- Mediun	1 3 n (2); F	3 High (3		-	-	-	-	

	EE8353 ELECTRICAL DRIVES AND CONTROLS
CO 1	Understand the basic concepts of different types of electrical machines and their performance.
CO 2	Knowledge about D.C motors and induction motors.
CO 3	Knowledge about the conventional and solid-state drives.
CO 4	Understanding the conventional and solid state speed control of D.C drives.
CO 5	Understanding the conventional and solid state speed control of A.C drives

-		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	-	1	1	-	-	1	-	-	-	-	-		-
2	1	1	-	1	1	-	-	1	1	-	-	-	-	-	-
3	1	1	-	1	1	-	-	1	-	-	-	-	•	-	-
4	1	1	-	1	1	-	-	1	1	-	-	-	-	-	-
5	1	1	-	1	1	-	-	1	1	-	-	-	-	-	-
5	1	1	-	1	1 Lo	-	1000	1 n (2); H	1 High (3	-	-	-	-		_

CO 1	Demonstrate the safety precautions exercised in the mechanical workshop.
CO 2	Make the workpiece as per given shape and size using Lathe. Join two metals using arc welding.
CO 4	Use sheet metal fabrication tools and make simple tray and funnel M.E., Ph.D.,
CO 5	Use different moulding tools, patterns and prepare said unoulds of TECHNOLOGY Mannivakkam, Chennai - 600 048.

co		PO													
CU	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	3	3	3	3	-	3	3	-	-	-	-	-	-
2	-	-	3	3	3	3	1	2	3	-	-	-	-	-	-
3	-	1	3	2	3	2	-	3	3	-	-	-	-	-	-
4	1	-	3	3	3	3	1	2	2	-	-	-	-	-	-
5	-	-	3	3	3	3	-	3	3	_	-	_	-	_	-

	ME8381 COMPUTER AIDED MACHINE DRAWING LABORATORY
CO 1	Ability to draw assembly drawings both manually and using standard CAD packages.
CO 2	Understand and interpret drawings of machine components.
CO 3	Follow the drawing standards, Fits and Tolerances.
CO 4	Re-create part drawings, sectional views and assembly drawings as per standards.
CO 5	Knowledge in handling 2D drafting, 3D modeling and Dimensioning.

СО				79 M. C. C. P. C.		P	0	0.0	11 22200				POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	-	-	3	3	3	3	-	3	3	-	-	-	-	-	-	
2	-	-	3	3	3	3	1	2	3	-	-	-	-	-	-	
3	-	1	3	2	3	2	-	3	3	-	-	-	_	-	-	
4	1	-	3	3	3	3	1	2	2	-	-	-	-	-	-	
5	-	-	3	3	3	3	- 1	3	3	-	-	-	-	-	-	
				4	Lov	w (1); I	Mediun	n (2); F	High (3)						

	EE8361 ELECTRICAL ENGINEERING LABORATORY
CO 1	Ability to perform speed characteristic of different electrical machine.
CO ₂	EE8361.2 Ability to perform Load test on DC Shunt & DC Series motor.
CO ₃	EE8361.3 Ability to perform Speed control of DC shunt motor.
CO 4	EE8361.4 Ability to perform O.C & S.C Test on a single phase transformer.
CO 5	EE8361.5 Ability to perform Load test on three phase squirrel cage Induction motor.
CO 6	EE8361.6 Ability to perform Speed control of three phase slip ring Induction Motor

co						P	O				or control of the		PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1	1	3	-	2	-	1	1	1	-	-	-	-	-	-	
2	1	1	3	-	2	1	1	1	1	-	-	-	-	-	-	
3	1	1	3	-	2	1	1	1	1	-	-	-	-	-	-	
4	1	1	3	-	2	1	1	1	1	-	-	-	-	-	-	
5	1	1	3	-	2	-	1	1	1	-	-	-	-	-	-	
6	1	1	3	-	2	2	1	1	1	-	-	-	-	-	-	

	HS8381 INTERPERSONAL SKILLS/LISTENING & SPEAKING
CO 1	Listen and respond appropriately.
CO 2	HS8381.2 Participate in group discussions
	HS8381.3 Make effective presentations
CO 4	HS8381.4 Participate confidently and appropriately in conversations both formal and informal.
	THEOUN KENNEDY, M.E., Ph.D.,

PRINCIPAL
PERI INSTITUTE OF TECHNOLOGY
Mannivakkam, Chennal - 600 048,

CO		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	1	3	-	-	1	1	-	-	-	-	-	-	-	-
2	-	-	3	1	-	1	1	-	-	_	-	-	-	-	-
3	1	-	3	1	-	-	1	-	-	_	-	-	-	-	-
4	1	-	3	1	-	1	1	-	-	-	-	-	-	-	-

	MA8452 STATISTICS AND NUMERICAL METHODS
CO 1	Apply the concept of testing of hypothesis for small and large samples in real life problems.
CO ₂	Apply the basic concepts of classifications of design of experiments in the field of agriculture.
CO 3	Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
CO 4	Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
CO 5	Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

CO		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	-	-	1	1	-	1	1	-	-	-		-	-
2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
3	3	3	-	1	-	-	-	-	-	-	-	-	-	-	-
4	3	2	-	-	1	1	-	2	1	-	-	-	-	-	-
5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-

	ME8492 KINEMATICS OF MACHINERY
CO 1	Discuss the basics of mechanism.
CO 2	Calculate velocity and acceleration in simple mechanisms.
CO 3	Develop CAM profiles.
CO 4	Solve problems on gears and gear trains.
CO 5	Examine friction in machine elements.

CO		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	-	3	1	-	-	-	-	-	-	-	_	-
2	3	3	3	-	3	-	-	-	1	-	-	-	-	-	-
3	3	3	3	1	3	-	1	-	-	_	-	-	-	-	-
4	3	2	3	-	2	-	-	-	1	-	-	-	-	-	-
5	2	3	3	-	3	-	1	-	-	-	-	-	-	-	-
					Lov	w (1); N	Mediun	n (2); F	High (3)					

CO 1	Explain the mechanism of material removal processes.
CO 2	Describe the constructional and operational features of centre lathe and other special purpose lathes.
CO 3	Describe the constructional and operational features of shaper, planner, milling, drilling, sawing and broaching machines.
CO 4	Explain the types of grinding and other super finishing processes apart from gear manufacturing processes.
CO 5	Summarize numerical control of machine tools and write a part program

360 CAB.

CO		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	3	3	3	-	1	3	3	-	-	-	-	-	-
2	3	-	3	3	3	1	-	3	3	-	-	-	-	-	-
3	3	1	3	3	3	-	1	3	3	-	-	-	-	-	-
4	3	-	2	3	3	1	-	2	3	-	-	-	-	-	-
5	3	1	3	3	3	-	1	3	3	_	_	_	_	-	-

	ME8491 ENGINEERING METALLURGY
CO 1	Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.
CO 2	Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
CO 3	Clarify the effect of alloying elements on ferrous and non-ferrous metals.
CO 4	Summarize the properties and applications of non metallic materials.
CO 5	Explain the testing of mechanical properties.

СО		PO													
CU	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	1	-	-	1	3	1	1	-	-	-	-	-	-
2	-	1	-	1	1	-	3	-		-	-	-	-	-	-
3	-	-	-	-	-	1	3	-	1-1	-	-	-	-	-	-
4	1	-1	1	-	1	_	3	2	1	-	-	-	, g. -	-	-
5	-	-	-	-	-	1	3	-	1	-	-	-	-	-	-
					Lo	w (1); N	Mediun	n (2); F	High (3)					

	CE8395 STRENGTH OF MATERIALS FOR MECHANICAL ENGINEERS
CO 1	Understand the concepts of stress and strain in simple and compound bars, the importance of
COI	principal stresses and principal planes.
CO 2	Understand the load transferring mechanism in beams and stress distribution due to shearing
COZ	force and bending moment.
CO 3	Apply basic equation of simple torsion in designing of shafts and helical spring.
CO 4	Calculate the slope and deflection in beams using different methods.
CO 5	Analyze and design thin and thick shells for the applied internal and external pressures.

СО		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	-	-	-	1	-	-	-	-	_	-	-
2	3	3	3	3	1	-	1	-	1	-	-	-	-	-	-
3	3	3	3	3	-	-	-	-	-	-	-	-	-	-	-
4	2	3	3	3	-	1	-	1	-	-	-	-	-	-	-
5	3	3	3	3	_	-	-	-	-	-	-	-	_	-	_

	ME8493 THERMAL ENGINEERING – I
CO 1	Apply thermodynamic concepts to different air standard cycles and solve problems.
CO ₂	Solve problems in single stage and multistage air compressors.
CO3	Explain the functioning and features of IC engines, components and auxiliaries.
CO 4	Calculate performance parameters of IC Engines.
CO 5	Explain the flow in Gas turbines and solve problems

CO		PO													
CU	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	-	1	3	-	1	-	-	-	-	-	-	-	-
2	3	3	1	-	3	1	1	-	-	-	-	-	-	-	-
3	3	3	-	-	3	-	1	-	-	-	-	-	-	-	-
4	3	3	-	1	3	1	-	-	-	-	-	-	-	-	-
5	3	3	-	-	3	-	-	-	-	-	-	-	_	-	-

	ME8462 MANUFACTURING TECHNOLOGY LABORATORY – II
CO 1	Use different machine tools to manufacturing gears.
CO 2	Ability to use different machine tools to manufacturing gears.
CO 3	Ability to use different machine tools for finishing operations.
CO 4	Ability to manufacture tools using cutter grinder.
CO 5	Develop CNC part programming

co -		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	1	3	-	1	-	1	-	1	-	-	-	-	-	-
2	1	-	3	1	-	1	1	-	1	-	-	-	-	-	-
3	1	1	3	1	-	2	1	-	1	-	_	-	-	-	-
4	1	-	3	1	-	1	1	-	-	-	-	-	-	-	-
5	-	1	3	-	1	-	1	-	1	-	-	-	_	-	-

CE	CE 8381 STRENGTH OF MATERIALS AND FLUID MECHANICS AND MACHINERY										
	LABORATORY										
CO 1	Understand the mechanical properties of materials when subjected to different types of										
COI	loading.										
CO ₂	Ability to perform Tension & Torsion tests on Solid materials.										
CO3	Ability to perform Hardness & Compression test on Solid materials.										
CO 4	Ability to perform Deformation test on Solid materials										

СО		PO													
CU	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	-	3	1	-	1	1		1	-	-	-	-	-	-
2	1	1	3	1	-	-	1		1	-	-	-	-	-	-
3	1	-	3	1	-	1	1	a-	-	-	-	-	-	-	_
4	-	1	3	-	1	-	1	-	1	_	-	-	-	-	-

	HS 8461 ADVANCED READING AND WRITING	
CO 1	Write different types of essays.	
CO 2	Write winning job applications.	
CO 3	Read and evaluate texts critically.	
CO 4	Display critical thinking in various professional contexts	

СО		PO														
CU	1	2	3	4	5	6	7	8	9	10	11	12	1/	2	3	
1	-	1	1	-	-	3	-	-	3	T		- t 1	W-	-	-	
2	-	-	1	1	-	3	-	- Dr	R3PA	CON	5	-	1-	-	-	
3	1	-	1	1	-	3	-	-	3	-2014	CHINE	JY,_M.	., Ph.D.,	-	-	
4	1	-	1	2	-	3	-	-	3	PRI	NCIPAL	-	-	-	-	
					Lov	w (1); I	Mediur	n (2); H	177	MULE	OF TEC	HNOLO	GY			
								M	anniva	kkam, i	Chenne	al - out	1343			

	ME8595 THERMAL ENGINEERING – II
CO 1	Solve problems in Steam Nozzle.
CO 2	Explain the functioning and features of different types of Boilers and auxiliaries and calculate performance parameters.
CO 3	Explain the flow in steam turbines, draw velocity diagrams for steam turbines and solve problems.
CO 4	Summarize the concept of Cogeneration, Working features of Heat pumps and Heat exchangers.
CO 5	Solve problems using refrigerant table / charts and psychrometric charts.

CO		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	1	2	3	1	1	3	2	-	-	-	-	-	-
2	3	3	1	1	3	1	1	3	1	-	-	-	-	-	-
3	3	3	1	1	3	1	1	3	1	-	-	-	_	-	-
4	3	3	1	1	3	1	1	3	1	-	-	-	-	-	-
5	3	3	1	2	3	1	1	3	1	-	-	-	-	-	-
	V				Lov	w (1); I	Mediun	n (2); F	High (3))					

	ME8593 DESIGN OF MACHINE ELEMENTS
CO 1	Understand the influence of steady and variable stresses in machine component design.
CO 2	Apply the concepts of design to shafts, keys and couplings.
CO 3	Apply the concepts of design to temporary and permanent joints.
CO 4	Apply the concepts of design to energy absorbing members, connecting rod and crank shaft.
CO 5	Apply the concepts of design to bearings.

CO		0.50	7-11			P	0		TOTAL STATE				PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1	3	2	3	1	1	3	3	3	-	-	-	-	-	-	
2	1	3	1	3	1	1	3	3	3	-	-	-	-	-	-	
3	2	3	1	3	1	1	3	3	3	-	-	2-1	-	-	-	
4	1	3	1	3	1	2	3	3	3	-	1-	-	-	-	-	
5	1	3	1	3	1	1	3	3	3	-	-	-	-	-	-	
5	1	3	1	3	Lo [*]	$\frac{1}{w(1);1}$	3 Mediur	3 n (2); H	3 High (3)	-	-	-		-	

	ME8501 METROLOGY AND MEASUREMENTS
CO 1	Describe the concepts of measurements to apply in various metrological instruments
CO 2	Outline the principles of linear and angular measurement tools used for industrial applications
CO 3	Explain the procedure for conducting computer aided inspection
CO 4	Demonstrate the techniques of form measurement used for industrial components
CO 5	Discuss various measuring techniques of mechanical properties in industrial applications

CO				10-00-18950		P	0						PSO		
CO	1	2	3	4	5	6	7	8	2	10	11	12	11)	2	3
1	3	1	3	3	2	1	3	3	Dr. R. P.	HEAN	0	-	-	-	-
2	3	1	3	3	1	1	3	3	1		VENN	BY, M	E., Ph.D	-	-
3	3	1	3	3	1	1	3	3	pel, n.	_PR	NCIPA	-	-	-	-
4	3	1	3	3	1	1	3	3	Max. I'm	SILITE	OF TEC	HNOL	OCY	-	-
5	3	1	3	3	1	1	3	3	1	PELITY,	Creat	wii =	7.3	-	-
					Lo	w (1); I	Mediur	n (2);	High (3))					

	ME8594 DYNAMICS OF MACHINES
CO 1	Calculate static and dynamic forces of mechanisms.
CO 2	Calculate the balancing masses and their locations of reciprocating and rotating masses.
CO3	Compute the frequency of free vibration.
CO 4	Compute the frequency of forced vibration and damping coefficient.
CO 5	Calculate the speed and lift of the governor and estimate the gyroscopic effect on automobiles,
CUS	ships and airplanes

~~				PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	-	3	-	3	-	3	-	-	-	-	-	-
2	3	3	3	1	3	1	3	1	3	-	-	-	-	-	-
3	3	3	3	1	3	-	3	1	3	-	-	-	-	-	-
4	3	3	3	-	3	-	3	-	3	-	-	-	-	-	-
5	3	3	3	1	3	1	3	1	3	-	-	-	-	-	-

	ME8511 KINEMATICS AND DYNAMICS LABORATORY
CO 1	Explain gear parameters, kinematics of mechanisms, gyroscopic effect and working of lab
CO 1	equipments.
	Determine mass moment of inertia of mechanical element, governor effort and range
CO ₂	sensitivity, natural frequency and damping coefficient, torsional frequency, critical speeds of
	shafts, balancing mass of rotating and reciprocating masses, and transmissibility ratio.

60		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	1	1	-	1	-	-	-	-	-	-	-
2	3	3	3	3	1	1		1	1	-	-	-	-	-	-

	ME8512 THERMAL ENGINEERING LABORATORY
CO 1	Conduct tests on heat conduction apparatus and evaluate thermal conductivity of materials.
CO 2	Conduct tests on natural and forced convective heat transfer apparatus and evaluate heat transfer coefficient.
CO 3	Conduct tests on radiative heat transfer apparatus and evaluate Stefan Boltzmann constant and emissivity.
CO 4	Conduct tests to evaluate the performance of parallel/counter flow heat exchanger apparatus and reciprocating air compressor.
CO 5	Conduct tests to evaluate the performance of refrigeration and airconditioning test rigs.

~~		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	-	1	-	-	-		-	-	-	-	-	-
2	3	3	3	1	1	1	-	1	-	-	-		-	-	1-1
3	3	3	3	1	1	1	-	1	1	-	-	-	-	-	
4	3	3	3	-	1	-	-	-	-		1 - 1	7 -	-	-	-
5	3	3	3	1	1	1	-	1	1	-	- 1	-	-	- /	-/
					Low	(1); N	/lediur	n (2);	High ((3)		9	0		10
											0	SV (>	/	

Dr. R. PALSON KENNEDY, M.E. Ph.D.

PRINCIPAL

PERLINCTITUTE OF TECHNOLOGY

Morrow askurn, Cher

	ME8513 METROLOGY AND MEASUREMENTS LABORATORY
CO 1	Explain gear parameters, kinematics of mechanisms, gyroscopic effect and working of lab equipments.
CO 2	Determine mass moment of inertia of mechanical element, governor effort and range sensitivity, natural frequency and damping coefficient, torsional frequency, critical speeds of
CO 2	shafts, balancing mass of rotating and reciprocating masses, and transmissibility ratio.

СО		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	1	-	3	1	-	-	-	-	-	-	-
2	3	3	3	3	1	-	3	1	1	-	-	-	-	-	-

	ME8651 DESIGN OF TRANSMISSION SYSTEMS	
CO 1	Apply the concepts of design to belts, chains and rope drives.	
CO 2	Apply the concepts of design to spur, helical gears.	
CO 3	Apply the concepts of design to worm and bevel gears.	
CO 4	Apply the concepts of design to gear boxes.	
CO 5	Apply the concepts of design to cams, brakes and clutches	

CO		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1	3	1	3	1	-	3	1	3	-	-	-	-	-	-	
2	1	3	7-	3	-	-	3	1	3	-	-	-	-	-	-	
3	1	3	2	3	1	1	3	1	3	-	-	-	-	-	-	
4	1	3	1	3	-	-	3	1	3	-	-	-	-	-	-	
5	1	3	1	3	1	-	3	1	3	-	-	-	-	-	-	

	ME8691 COMPUTER AIDED DESIGN AND MANUFACTURING
CO 1	Explain the 2D and 3D transformations, clipping algorithm, Manufacturing models and
CO 1	Metrics
CO 2	Explain the fundamentals of parametric curves, surfaces and Solids
CO 3	Summarize the different types of Standard systems used in CAD
60.4	Apply NC & CNC programming concepts to develop part programme for Lathe & Milling
CO 4	Machines
CO 5	Summarize the different types of techniques used in Cellular Manufacturing and FMS

~~		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	2	3	3	1	3	1	1	1	1	-	-	-	-	-	-	
2	1	3	3	1	3	1	2	1	1	-	-	-	-	-	-	
3	1	3	3	2	3	1	1	1	2	-	-	-	-	-	-	
4	1	3	3	1	3	1	1	2	1	1-	-	-	-	-	-	
5	1	3	3	1	3	2	1	1	1	1-	-	-	-	-	-	

	ME8693 HEAT AND MASS TRANSFER
CO 1	Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems
CO 2	Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems.
CO 3	Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and

	solve problems
CO 4	Explain basic laws for Radiation and apply these principles to radiative heat transfer
	between different types of surfaces to solve problems
COF	Apply diffusive and convective mass transfer equations and correlations to solve
CO 5	problems for different applications

		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	3	3	2	1	1	3	3	-	-	-	-	-	-	
2	3	3	3	3	1	1	1	3	3	-	-	-	-	-	-	
3	3	3	3	3	1	1	1	3	3	-	-	-	-	-	-	
4	3	3	3	3	1	1	1	3	3	-	-	-	-	-	-	
5	3	3	3	3	2	1	1	3	3	-	-	-	-	-	_	

	ME8692 FINITE ELEMENT ANALYSIS
CO 1	Summarize the basics of finite element formulation.
CO 2	Apply finite element formulations to solve one dimensional Problems.
CO 3	Apply finite element formulations to solve two dimensional scalar Problems.
CO 4	Apply finite element method to solve two dimensional Vector problems.
	Apply finite element method to solve problems on iso parametric element and
CO 5	dynamic Problems.

		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	1	3	1	1	1	1	3		-	-	-	-	-	
2	3	3	1	3	1	1	2	1	3	-	-	-	-	-	-	
3	3	3	2	3	1	2	1	1	3	-	-	-	-	-	-	
4	3	3	1	3	1	1	1	2	3	-	-	-	-	-	-	
5	3	3	1	3	1	1	1	1	3	-	-	-	-	-	-	
					Low	(1); N	/lediur	n (2);	High ((3)						

	ME8694 HYDRAULICS AND PNEUMATICS
CO 1	Explain the Fluid power and operation of different types of pumps.
CO 2	Summarize the features and functions of Hydraulic motors, actuators and Flow control valves
CO 3	Explain the different types of Hydraulic circuits and systems.
CO 4	Explain the working of different pneumatic circuits and systems.
CO 5	Summarize the various trouble shooting methods and applications of hydraulic and pneumatic systems.

						P	0							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	-	3	3	1	-	3	-	-	-	-	-	-	-
2	3	3	1	3	3	1	-	3	1	-	-	-	-	-	-
3	3	3	1	3	2	-	-	3	-	-	1-	-	-	-	-
4	3	3	1	3	3	1	-	3	-	-	-	-	-	-	-
5	3	3	-	3	3	1	-	3	1	-	-	A			-
,					3 Low	(1); N	<u> Aediur</u>	m (2);	High	PERI I	PALSO NSTITU	PRINCI	WNED	Y. M.E.	Ph.D.

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY

Mannivakkam, Chennai - 600 048.

	ME8681 CAD / CAM LABORATORY	
CO 1	Draw 3D and Assembly drawing using CAD software	
	Demonstrate manual part programming with G and M codes using CAM.	

		PSO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	3	3	1	-	3	1	-	2	-	-	-	-	-	-
2	-	3	3	1	-	3	1	-	1	-	-	-	-	-	-

	HS8581 PROFESSIONAL COMMUNICATION
CO 1	Make effective presentations
CO 2	Participate confidently in Group Discussions.
CO3	Attend job interviews and be successful in them.
CO 4	Develop adequate Soft Skills required for the workplace.

		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	-	1	1	-	-	3	3	-	3	-	-	-	-	-	-	
2	-	-	1	1	-	3	3		3	-	-	-	-	-	-	
3	-	-	-	-	-	3	3		2		-	-	-	-	-	
4	-	1	1	11-	-	3	3	_	3	-	-	-	-	-	-	

	ME8792 POWER PLANT ENGINEERING
CO 1	Explain the layout, construction and working of the components inside a thermal power plant.
CO 2	Explain the layout, construction and working of the components inside a Diesel, Gas and
CO 2	Combined cycle power plants.
CO 3	Explain the layout, construction and working of the components inside nuclear power plants.
CO 4	Explain the layout, construction and working of the components inside Renewable energy
CO 4	power plants.
CO 5	Explain the applications of power plants while extend their knowledge to power plant
CU 5	economics and environmental hazards and estimate the costs of electrical energy production

		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	3	3	1	1	-	3	-	-	1-	-	-	-	-	
2	3	3	3	2	1	-	1	3	1	-		-	-	-	-	
3	3	2	3	3	-	-	1	3	2	-	1-	-	-	-	-	
4	3	3	3	2	1	-	1	3	-	-	-	_	-	-	-	
5	3	3	3	3	-	1	-	3	1	-	-	-	-		_	

	ME8791 MECHATRONICS
CO 1	Computer Systems for the Control of Mechanical, Electronic Systems and sensor technology.
00.0	Discuss the architecture of Microprocessor and Microcontroller, Pin Diagram, Addressing
CO 2	Modes of Microprocessor and Microcontroller.
00.2	Discuss Programmable Peripheral Interface, Architecture of 8255 PPL, and various device
CO 3	interfacing.
CO 4	Explain the architecture, programming and application parson application parson application parson and application parson application application parson application
CO 4	problems and challenges in the areas of Mechatronic engineering
CO 5	Discuss various Actuators and Mechatronics system using the knowledge and skills acquired through the course and also from the given case studies Manhivakkam, Chennal - 600 048.
CO 5	through the course and also from the given case studies

~~				PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	1	3	1	-	3	3	-	-	-	-	-	-
2	3	3	3	1	2	2-2	1	3	3	-	_	-	-	-	-
3	3	2	3	-	3	1-1	1	3	3	-	-	-	-	-	-
4	3	3	3	-	2	-	1	3	3	-	-	-	-	-	-
5	3	3	3	_	3	1	-	3	3	_	-	-	-	-	-

	ME8793 PROCESS PLANNING AND COST ESTIMATION	
CO 1	Select the process, equipment and tools for various industrial products.	
CO 2	Prepare process planning activity chart.	
CO 3	Explain the concept of cost estimation.	
CO 4	Compute the job order cost for different type of shop floor.	
CO 5	Calculate the machining time for various machining operations.	

60		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	-	3	-	3	1	-	1	-	1	-	-	-	-	-	-	
2	1	3	1	3	-	1		1	1	-	-	-	-	-	-	
3	_	3	1	3	-	-	-	1	2	-	-	-	-	-	-	
4	1	3	1	3	-	1	-	1	1	-	-	-	-	-	-	
5	-	3	-	3	1	-	1	-	1	-	-	-	-	-	-	
					Lo	w (1); I	Mediun	n (2); F	High (3)						

	ME8711 SIMULATION AND ANALYSIS LABORATORY
CO 1	Simulate the working principle of air conditioning system, hydraulic and pneumatic cylinder and cam follower mechanisms using MATLAB.
CO 2	Analyze the stresses and strains induced in plates, brackets and beams and heat transfer problems.
CO 3	Calculate the natural frequency and mode shape analysis of 2D components and beams.

~~		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	1	1	3	1	3	1	1	-	-		-	-	-
2	3	1	1	1	3	1	3	2	1	-	-	-	-	7-	-
3	3	1	1	1	3	1	3	1	1	-	-	-	-	1-	-

	ME8781 MECHATRONICS LABORATORY
CO 1	Demonstrate the functioning of mechatronics system with various pneumatic, hydraulic and electrical systems.
CO 2	Demonstrate the functioning of control systems with the help of PLC and microcontrollers.

60	-					P	O							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	1	3	1	-	3	3	-		-	7	-	-
2	3	3	3	1	2	-	1	3	3	-	-	1-	. 1	/	-

DI. R. PALSON KENNEDY, M.E., Ph.D.,
PRINCIPAL
PERI INSTITUTE OF TECHNOLOGY
MODERNON KURT, Charles

ME8793 PROCESS PLANNING AND COST ESTIMATION

C

Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

		PO														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	-	-	2	2	1	3	3	2	3	-	-	-	-	-	-	
2	1	1	1	1	-	3	2	1	3	-	-	-	_	-		
3	1	-	1	2	-	3	2	-	3	-	-	-	-	-	-	
4	1	-	1	1	2	3	2	1	3	-	-	-	-	-	-	
5	-	-	2	1	1	3	2	-	3	-	_	-	-	-	-	

ME8811 PROJECT WORK

CO On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	2	1	3	3	1	3	-	-	-	-	-	-

	IE8693 PRODUCTION PLANNING AND CONTROL
CO 1	Upon completion of this course, the students can able to prepare production planning and control activities such as work study, product planning, production scheduling, Inventory Control.
CO 2	They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

						P)							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1-1	1	3	-	1	3	3	-	-	-	-	-	-
2	3	1	1	1	3	1	1	3	3	-	-	-	-	-	-

Dr. R. PALSON KENNEDY, M.E., Ph.D.,
PRINCIPAL
PRINCIPAL
AGDINATION OF SECURIAR COST POSS
AGDINATION OF SECURIAR COST
AG

PERI INSTITUTE OF TECHNOLOGY

(Approved by AICTE, Affiliated to Anna University)

Affiliation number: F.no. Southern/1-4260192094/2019/EOA

Department of Science and Humanities

CO PO mapping

Regulation 2017

	HS8151 TECHNICAL ENGLISH
CO 1	Read technical texts and write area specific texts specifically
CO 2	Listen and comprehend lectures and talks in their areas of specialization successfully
CO3	Describe a process through technical texts
CO 4	Speak appropriately and effectively in varied formal and informal contexts
CO 5	Write short essays of a general kind and personal letters and emails in English

CO						P	0							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-0	-	-	-	-	-	-	1	2	2	-	2	-	-	-
2	-	-	-	-	-	-	-	2	2	2	-	2	-	-	-
3	-	-	-	-	-	-	-	2	3	3	-	2	-	-	-
4	-	-	-	-	-	-	-	2	3	3	-	3	-	-	-
5	-	-	-	-	-	-	-	2	3	3	-	2	-	-	-

	HS8251 COMMUNICATIVE ENGLISH
CO 1	Read articles of a general kind in magazines and newspapers
CO 2	Participate effectively in informal conversations; introduce themselves and their
	friends.
CO3	Express opinions and talk about routine actions
CO 4	comprehend conversations and short talks delivered in English
CO 5	Write short essays of a general kind and personal letters and emails in English

00						Pe	0							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	-	-	-	-	-	1	2	2	-	2	-	-	-
2	-	-	-	-	-	-	-	1	2	2	-	2	(-)	-	-
3	-	-	-	-	-	-	-	1	3	3	-	3	-	-	-
4	-	-	-	-	-	-	-	2	3	3	-	2	-	-	-
5	_	_	-	-	-	-	-	2	3	3	-	2	-	-	-

PERI INSTITUTE OF TECHNOTORY

Monnivokhum, Chierand - 60) Und

-	CY8151 ENGINEERING CHEMISTRY
CO 1	To understand the water related problems in boilers and their treatment techniques.
CO 2	To understand the concept and applications of adsorption in the field of water and air pollution abatement.
CO 3	To apply phase rule in the alloying and the behaviour of one component and two component systems using phase diagram
CO 4	To recommend suitable fuels for engineering processes and applications.
CO 5	To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

СО						P	0							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	-	-	-	1	2	-	-	-	-	1	2	2	-
2	2	2	-	-	-	1	2	-	-	-	-	1	2	2	-
3	3	3	-	-	-	2	2	-	-	-	-	2	3	3	-
4	3	3	-	-	-	2	3	-	-	-	-	2	3	3	-
5	3	3	-	-	-	2	3	-	-	-	-	2	3	3	-
5	3	3	=	-		(1); N	1ediun				-	2	3	3	

	GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING
CO 1	Explaining the concepts of different ecosystem and biodiversity present.
	Applying the basic concepts of science and engineering for pollution abatement
CO ₂	Understanding the basic concepts of science and engineering for pollution abatement
CO3	Explaining the different types of natural resources, usage and exploitation
CO 4	Implementing scientific, technological, and economic solutions to environmental
	problems
CO 5	Outline on the impact of population on environment

2	3	4										POS	
	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	-	-	2	3	2	1	-	-	1	2	1	1
1	1	-	-	2	3	2	1	-	-	2	2	1	1
1	1	-	-	2	3	2	1	-	-	1	2	1	1
1	1	-	-	2	3	2	1	-	-	1	2	1	1
1	1	-	1-	2	3	2	1	-	-	1	2	1	1
	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 - 1 1 - 1 1 - 1 1 -	1 1 1 1 1 1	1 1 2 1 1 1 2 1 1 2	1 1 - - 2 3 1 1 - - 2 3 1 1 - - 2 3 1 1 - - 2 3	1 1 - - 2 3 2 1 1 - - 2 3 2 1 1 - - 2 3 2 1 1 - - 2 3 2	1 1 - - 2 3 2 1 1 1 - - 2 3 2 1 1 1 - - 2 3 2 1 1 1 - - 2 3 2 1	1 1 - - 2 3 2 1 - 1 1 - - 2 3 2 1 - 1 1 - - 2 3 2 1 - 1 1 - - 2 3 2 1 -	1 1 - - 2 3 2 1 - - 1 1 - - 2 3 2 1 - - 1 1 - - 2 3 2 1 - - 1 1 - - 2 3 2 1 - -	1 1 - - 2 3 2 1 - - 2 1 1 - - 2 3 2 1 - - 1 1 1 - - 2 3 2 1 - - 1 1 1 - - 2 3 2 1 - - 1	1 1 - - 2 3 2 1 - - 2 2 1 1 - - 2 3 2 1 - - 1 2 1 1 - - 2 3 2 1 - - 1 2 1 1 - - 2 3 2 1 - - 1 2	1 1 - - 2 3 2 1 - - 2 2 1 1 1 - - 2 3 2 1 - - 1 2 1 1 1 - - 2 3 2 1 - - 1 2 1 1 1 1 2 2 2 1 - - 1 2 1

	PH3151 ENGINEERING PHYSICS
CO 1	Students will gain knowledge on the basic properties of matter and its applications
CO 2	students will acquire knowledge on the concept of waves and optical devices and
CUZ	their applications in fibre optics
CO 3	students will have adequate knowledge on the concepts of thermal properties of
CO 3	material and their application in expansion of heat exchanges
CO 4	The student will get knowledge on advances physics, concepts of quantum theory
CU 4	and its application in tunneling microscope
CO 5	The student will understand the basic of crystal their structures and different crystal
CO 3	growth techniques

PRINCIPAL
PERI INSTITUTE OF TECHNOLOGY
Mannivakkam, Chennai - 600 048

~~						P	C							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2										2			
2	2	1										2			
3	2	2	1									2			
4	2	1										1			
5	2	2		1								1			

	MA8151 ENGINEERING MATHEMATICS I
CO 1	Use both the limit definition and rules of differentiate function in differential equations.
CO 2	Apply differentiation to solve maxima and minima problems.
CO3	Apply integrals both by using Integration and Trigonometric methods.
CO 4	Evaluate multiple integrals using techniques of integration (Double and Triple Integral).
CO 5	Evaluate various techniques in solving differential equations.

					Pe	0		(10)					POS	
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
2	2	-	-	-	-	-	-	1	-	-	2	2	2	-
3	3	-	-	-	-	-	-	2	-	-	3	3	3	-
3	3	-	-	_	-	-	-	2	-	-	3	3	3	-
3	3	-	-	-	-	-	-	2	-	-	3	3	3	-
3	3	-	-	-	-	-	-	2	-	-	3	3	3	-
	1 2 3 3 3 3	3 3	3 3 -	3 3	2 2 3 3 3 3	1 2 3 4 5 6 2 2 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - -	2 2 - - - - 3 3 - - - - 3 3 - - - - 3 3 - - - - 2 2 2 - - -	1 2 3 4 5 6 7 8 2 2 - - - - - 3 3 - - - - - 3 3 - - - - - 3 3 - - - - - 3 3 - - - - -	1 2 3 4 5 6 7 8 9 2 2 - - - - - 1 3 3 - - - - 2 3 3 - - - - 2 3 3 - - - - 2 3 3 - - - - 2	1 2 3 4 5 6 7 8 9 10 2 2 - - - - - 1 - 3 3 - - - - - 2 - 3 3 - - - - - 2 - 3 3 - - - - - 2 - 3 3 - - - - - 2 -	1 2 3 4 5 6 7 8 9 10 11 2 2 - - - - - - 1 - - 3 3 - - - - - - - - 3 3 - - - - - - - - 3 3 - - - - - - - - 3 3 - - - - - - - - 3 3 - - - - - - - - -	1 2 3 4 5 6 7 8 9 10 11 12 2 2 - - - - - - 2 3 3 - - - - - 2 - - 3 3 3 - - - - - 2 - - 3 3 3 - - - - - 2 - - 3	1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 - - - - - 1 - - 2 2 3 3 - - - - - 2 - - 3 3 3 3 - - - - - 2 - - 3 3 3 3 - - - - - 2 - - 3 3	1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 2 - - - - - 1 - - 2 2 2 3 3 - - - - - - - 3 3 3 3 - - - - - - - 3 3 3 3 - - - - - - - 3 3 3 3 - - - - - - - 3 3

	MA8251 ENGINEERING MATHEMATICS II
CO 1	Eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite
CO 1	matrices and similar matrices.
CO 2	Gradient, divergence and curl of a vector point function and related identities.
CO 3	Evaluation of line, surface and volume integrals using Gauss, Stokes and Green's
CO 3	theorems and their verification.
CO 4	Analytic functions, conformal mapping and complex integration.
00.5	Laplace transform and inverse transform of simple functions, properties, various
CO 5	related theorems and application to differential equations with constant coefficients.

~~						P	O							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	-	-	-	-	-	-	1	-	-	1	2	2	-
2	2	2	-	-	- 1	_	-	-	1	-	-	2	2	2	-
3	2	2	-	-	- 1	-	-	-	1	-	-	2	2	2	-
4	2	2	-	-	-	-	-	-	1	-	-	2	2	2	-
5	3	3	-	-	-	-	-	-	3	-	-	2	3	3	-

PRINCIPAL

PERLINSTITUTE OF TECHNOLOGY Mannivakkam, Chennal 48

PERI INSTITUTE OF TECHNOLOGY

(Approved by AICTE, Affiliated to Anna University)

Affiliation number : F.no. Southern/1-4260192094/2019/EOA

Department of Science and Humanities

CO PO mapping

Regulation 2021

	HS3151 TECHNICAL ENGLISH
CO 1	Read technical texts and write area specific texts specifically
CO 2	Listen and comprehend lectures and talks in their areas of specialization successfully
CO 3	Describe a process through technical texts
CO 4	Speak appropriately and effectively in varied formal and informal contexts
	Write short essays of a general kind and personal letters and emails in English

					-97 10 100	P	0							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	-	-	-	-	-	1	2	2	-	2	7	-	-
2	-	-	-	-	-	-	-	2	2	2	-	2	-	-	-
3	_	-	-	-	-	-	-	2	3	3	-	2	1-	-	-
4	-	-	-	-	-	-	-	2	3	3	-	3	(i =		
5	_	-	-	-	-	-	-	2	3	3	-	2	-	-	-

******	HS3251 COMMUNICATIVE ENGLISH
CO 1	Read articles of a general kind in magazines and newspapers
CO 2	Participate effectively in informal conversations; introduce themselves and their
	friends.
CO3	Express opinions and talk about routine actions
CO 4	comprehend conversations and short talks delivered in English
CO 5	Write short essays of a general kind and personal letters and emails in English

~~						P	C							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	-	-	-	-	-	-	-	1	2	2	-	2	-	-	-
2	-	-	-	-	-	-	-	1	2	2	-	2	-	-	-
3	-	-	-	-	-	-	-	1	3	3	-	3	-	-	-
4	_	-	-	-	-	-	-	2	3	3	-	2	-	-	-
5	_	-	-	-	-	-	-	2	3	3	-	2	-	-	-

Dr. R. PALSON KENNEDY M.E., Ph.D.,
PRINCIPAL

DEDITIVICATION OF TRUMPINGA

In Jakani, Chemiai - 600 to J.

	CY3151 ENGINEERING CHEMISTRY
CO 1	To understand the water related problems in boilers and their treatment techniques.
CO 2	To understand the concept and applications of adsorption in the field of water and air pollution abatement.
CO 3	To apply phase rule in the alloying and the behaviour of one component and two component systems using phase diagram
CO 4	To recommend suitable fuels for engineering processes and applications.
CO 5	To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

~~						P	0							POS	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	-	-	-	1	2	-	-	-	-	1	2	2	-
2	2	2	-	-	-	1	2	-	-	-	-	1	2	2	-
3	3	3	-	-	-	2	2	-	-	-	-	2	3	3	-
4	3	3	-	-	-	2	3	-	-	-	-	2	3	3	-
5	3	3	-	-	-	2	3	-	-	-	-	2	3	3	-

	PH3151 ENGINEERING PHYSICS
CO 1	Understand the importance of mechanics.
CO 2	Express their knowledge in electromagnetic waves.
CO 3	Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
CO 4	Understand the importance of quantum physics.
CO 5	Comprehend and apply quantum mechanical principles towards the formation of
CO 3	energy

00						P	0	250			entrolluseon e			POS	,
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1									2	2	2	1
2	2	2	1									2	2	2	1
3	2	2	1									2	2	2	1
4	2	1										1	2	1	
5	3	3										2	3	3	

	PH8253 Physics for Electronics Engineering
CO 1	Gain knowledge on classical and quantum electron theories, and energy band
	structures.
CO 2	Acquire knowledge on basics of semiconductor physics and its applications in
CUZ	various devices.
CO 3	Get knowledge on magnetic and dielectric properties of materials.
CO 1	Have the necessary understanding on the functioning of optical materials for
CO 4	optoelectronics.
CO 5	Understand the basics of quantum structures and their applications in spintronics and
CU 5	carbon electronics. Dr. R. PALSON KENNEDY, M.E., Ph.D.
	MI ALSON KENNEDY WE
	PERT INSTITUTE OF THE PH.D.
	Mannivakkam, Chennai - 400 a
	Mannivakkam, Chennai - 600 048.
	Chennai - cocy
	000 048

60	PO														POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
1	2	1										1	2	1				
2	2	2	1									1	2	2	1			
3	2	1		1								2	2	1				
4	2	1	1									1	2	1	1			
5	2	1	1									2	2	1	1			

	PH3256 Physics for Information science
CO 1	Gain knowledge on classical and quantum electron theories, and energy band structures
CO 2	Acquire knowledge on basics of semiconductor physics and its applications in various devices
CO 3	Get knowledge on magnetic properties of materials and their applications in data storage
CO 4	Have the necessary understanding on the functioning of optical materials for optoelectronics
CO 5	Understand the basics of quantum structures and their applications and basics of quantum computing

~~	PO														POS			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
1	2	2		1								1	2	2				
2	2	2	1									1	2	2	1			
3	2	2	1									2	2	2	1			
4	2	2	2									2	2	2	2			
5	2		2	1								2	2		2			
5	2	2	2	1	Low	(1); N	/lediur	n (2);	High ((3)		2	2		2			

E-100	MA3151 MATRICES AND CALCULAS
CO 1	Use the matrix algebra methods for solving practical problems.
CO 2	Apply differential calculus tools in solving various application problems.
CO 3	Able to use differential calculus ideas on several variable functions.
CO 4	Apply different methods of integration in solving practical problems.
CO 5	Apply multiple integral ideas in solving areas, volumes and other practical problems.

00						P	0							POS 2 2 3 3 3 3 3 3	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1		3
1	2	2	-	-	-	-	-	-	2	-	-	1	2	2	-
2	3	3	-	-	-	-	-	-	3	-	-	1	3	3	-
3	3	3	-	-	-	-	-	-	3	-	-	1	3	3	-
4	3	3	-	-	-	-	-	-	3	-	-	2	3	3	-
5	3	3	-	-	-	-	-	-	3	-	-	1	3	3	-
					Low	(1); N	/lediur	n (2);	High ((3)		0	7		, (
									Dr	. R. PA	LSON	KENA	FIN	40	7
												RINCIPA	u,	M.E., P	h.D.,

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY Monning. Care intendic. 5-3.

	MA3251 STATISTICS AND NUMERICAL METHOD
CO 1	Understand the concept of testing of hypothesis for small and large samples in real life problems.
CO 2	Apply the basic concepts of classifications of design of experiments in the field of agriculture.
CO 3	Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
CO 4	Apply the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
CO 5	Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

00		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	-	-	-	-	-	-	2	-	-	2	2	2	-
2	3	3	-	-	-	-	-	-	3	-	-	2	3	3	-
3	3	3	-	-	-	-	-	-	3	-	-	2	3	3	-
4	3	3	-	-	-	-	-	-	3	-	-	3	3	3	-
5	3	3	-	_	-	-	-	_	3	-	-	3	3	3	-

Dr. R. PALSON KENNEDY, M.E., Ph.D.

PRINCIPAL

PERI INSTITUTE OF TECHNOLOGY Mannivakkam, Chennai - 600 048.